
Your State is Not Mine: A Closer Look at Evading Stateful
Internet Censorship

Zhongjie Wang
zwang048@ucr.edu

University of California, Riverside

Yue Cao
ycao009@ucr.edu

University of California, Riverside

Zhiyun Qian
zhiyunq@cs.ucr.edu

University of California, Riverside

Chengyu Song
csong@ucr.edu

University of California, Riverside

Srikanth V. Krishnamurthy
krish@cs.ucr.edu

University of California, Riverside

ABSTRACT
Understanding the behaviors of, and evading state-level Internet-
scale censorship systems such as the Great Firewall (GFW) of China,
has emerged as a research problem of great interest. One line of eva-
sion is the development of techniques that leverage the possibility
that the TCP state maintained on the GFW may not represent the
state at end-hosts. In this paper we undertake, arguably, the most ex-
tensive measurement study on TCP-level GFW evasion techniques,
with several vantage points within and outside China, and with
clients subscribed to multiple ISPs. We find that the state-of-the
art evasion techniques are no longer very effective on the GFW.
Our study further reveals that the primary reason that causes these
failures is the evolution of GFW over time. In addition, other factors
such as the presence of middleboxes on the route from the client to
the server also contribute to previously unexpected behaviors.

Our measurement study leads us to new understandings of the
GFW and new evasion techniques. Evaluations of our new eva-
sion strategies show that our new techniques provide much higher
success rates of (compared to prior schemes) ≈ 90 % or higher.
Our results further validate our new understandings of the GFW’s
evolved behaviors. We also develop a measurement-driven tool
INTANG, that systematically looks for and finds the best strategy
that works with a server and network path. Our measurements
show that INTANG can yield near perfect evasion rates and is ex-
tremely effective in aiding various protocols such as HTTP, DNS
over TCP, and Tor in evading the GFW.

CCS CONCEPTS
•Networks→Network measurement;Network privacy and
anonymity; Middle boxes / network appliances; • Social and pro-
fessional topics → Technology and censorship; • Security
and privacy → Intrusion detection systems;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IMC ’17, November 1–3, 2017, London, UK
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5118-8/17/11. . . $15.00
https://doi.org/10.1145/3131365.3131374

KEYWORDS
Censorship circumvention, TCP, traffic manipulation, the Great
Firewall of China, INTANG
ACM Reference Format:
Zhongjie Wang, Yue Cao, Zhiyun Qian, Chengyu Song, and Srikanth V.
Krishnamurthy. 2017. Your State is Not Mine: A Closer Look at Evading
Stateful Internet Censorship. In Proceedings of IMC ’17. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3131365.3131374

1 INTRODUCTION
Internet censorship and surveillance are prevalent nowadays. State-
level censorship systems such as NSA’s PRISM and the Great Fire-
wall (GFW) of China, have the capability of analyzing terabyte-level
traffic across the country in realtime. Protocols with plaintext (e.g.,
HTTP, DNS, IMAP), are directly subject to surveillance and ma-
nipulation by the governors [1, 2, 5, 14, 20, 29], while protocols
with encryption (e.g., SSH, TLS/SSL, PPTP/MPPE) and Tor, can be
identified via traffic fingerprinting, leading to subsequent blocking
at the IP-level [13, 31].

The key technology behind these censorship systems is Deep
Packet Inspection (DPI) [27], which also powers Network Intrusion
Detection Systems (NIDS). As previously reported, most censor-
ship NIDS are deployed “on-path” in the backbone and at border
routers [27, 29, 34].

In order to examine application-level payloads, DPI techniques
have to correctly implement the underlying protocols like TCP,
which is the cornerstone of today’s Internet. Ptacek et al. [23] have
shown that any NIDS is inherently incapable of always reconstruct-
ing a TCP stream the same way as its endpoints. The root cause for
this is the presence of discrepancies between the implementations
of the TCP (and possibly other) protocol at the end-host and at the
NIDS. Even if the NIDS perfectly mirrors the implementation of one
specific TCP implementation, it may still have problems processing
a stream of packets generated by another TCP implementation.

Because of this ambiguity in packet processing, it is possible
for a sender to send carefully crafted packets to desynchronize the
TCP Control Block (TCB) maintained by the NIDS from the TCB
on the receiver side. In some cases, the NIDS can even be tricked to
completely deactivate the TCB (e.g., after receiving a spurious RST
packet), effectively allowing an adversary to “manipulate” the TCB
on the NIDS. Censorship monitors suffer from the same fundamen-
tal flaw—a client can evade censorship if the TCB on the censor-
ship monitor can be successfully desynchronized with the one on
the server. Different from other censorship evasion technologies

114

https://doi.org/10.1145/3131365.3131374
https://doi.org/10.1145/3131365.3131374

IMC ’17, November 1–3, 2017, London, UK Zhongjie Wang et al.

such as VPN, Tor, and Telex [32], that rely on additional network
infrastructure (e.g., proxy node) [27], TCB-manipulation-based eva-
sion techniques only require crafting/manipulating packets on the
client-side and can potentially help all TCP-based application-layer
protocols “stay under the radar.” Based on this idea, Khattak et
al. [17] explored several practical evasion techniques against the
GFW, by studying its behaviors at the TCP and HTTP layers. The
West Chamber Project [25] provides a practical tool that imple-
mented a few of the evasion strategies but has ceased development
since 2011; unfortunately none of the strategies were found to be
effective during our measurement study. Besides these attempts,
there is no recent data point, showing how these evasion techniques
work in the wild.

In this work, we extensively evaluate TCP-layer censorship eva-
sion techniques against the GFW. By testing from 11 vantage points
inside China spread across 9 cities (and 3 ISPs), we are able to cover
a variety of network paths that potentially include different types
of GFW devices and middleboxes (see § 3.3 for details). We measure
how TCB manipulation can help HTTP, DNS, and Tor evade the
GFW.

First, we measure how existing censorship evasion strategies
work in practice. Interestingly, we find that most of them no longer
work well due to unexpected network conditions, interference from
the network middleboxes, or more importantly, new updates to
the GFW (different from the model considered previously). These
initial measurement results motivate us to construct probing tests
to infer the “new” updated GFW model. Finally, based on the new
GFW model and lessons learned with regards to other practical
challenges in deploying TCP-layer censorship evasion, we develop
a set of new evasion strategies. Our measurement results show that
the new strategies have a 90% or higher, evasion success rate. We
also evaluate how these new strategies can help HTTP, DNS, Tor,
and VPN evade the GFW.

In addition, during the course of our measurement study, we
design and implement a censorship evasion tool, INTANG, integrat-
ing all of the censorship evasion strategies considered in this paper;
INTANG is easily extensible to incorporate additional strategies.
It requires zero configuration and runs in the background to help
normal traffic evade censorship. We plan to open source the tool to
support future research in this direction.

We summarize our contributions as the follows:
• We perform the largest measurement study to date, of the GFW’s
behaviors with TCP-layer censorship evasion techniques.

• We demonstrate that existing strategies are either not working
or are limited in practice.

• We develop an updated and more comprehensive model of the
GFW based on the measurement results.

• We propose new, measurement-driven strategies that can bypass
the new model.

• We measure the success rates of our improved strategies with
regards to censorship evasion for HTTP, DNS, VPN, and Tor. The
results show very high success rates (> 90 %).

• We develop an open-source tool to automatically measure the
GFW’s responsiveness, and for censorship circumvention. The

tool is extensible as a framework for the integration of additional
evasion strategies that may emerge from future research.

2 BACKGROUND
In this section, we provide the background on DPI-based censorship
techniques employed by the GFW and discuss previously proposed
evasion strategies.

2.1 On-path censorship systems
An “on-path” censorship system wiretaps routers of the ISPs con-
trolled by the censor, makes copies of the packets on the fly and
performs analysis in parallel with ongoing traffic. In contrast, an
“in-path” censorship system places devices as part of a route, an-
alyzes the traffic and then passes the same to the next hop. The
capabilities of an “on-path” system include reading packets and
injecting new packets, while an “in-path” system can also discard
and/or modify packets. For an “on-path” system, processing time is
not critical and thus, it can do more sophisticated analysis; for an
“in-path” system, it is critical not to perform heavy analysis that
will introduce packet delays. Large-scale censorship systems like
the GFW usually deploy the “on-path” design in order to ensure
extremely high throughput.

To examine the application-layer content with DPI, a censorship
system like the GFW needs to first reassemble TCP streams from
the packets. As reported [17], the GFW has a simplified TCP imple-
mentation to reconstruct the TCP data flow and pass it to the upper
layer for further analysis. The GFW is able to analyze a wide range
of application protocols (e.g., HTTP, DNS, IMAP), and can apply its
rule-based detection engine to detect sensitive application content.
TCP connection reset is a versatile censorship technique. Due to
the “on-path” nature of the GFW, it cannot discard the undesired
packets between a pair of end-hosts. Instead it can inject packets
to force the connection to shut down, or disrupt connection estab-
lishment. Once any sensitive content is detected, the GFW injects
RST (type-1) and RST/ACK (type-2) packets to both the correspond-
ing client and the server to disrupt the ongoing connection and
sustains the disruption for a certain period (90 seconds as per our
measurements). During this period, any SYN packet between the
two end-hosts will trigger a forged SYN/ACK packet with a wrong
sequence number from the GFW, which will obstruct the legitimate
handshake; any other packets will trigger forged RST and RST/ACK
packets, which will tear down the connection.

According to previous work [3, 25] and our measurements, RST
(type-1) and RST/ACK (type-2) are likely from two types of GFW
instances that usually exist together. We have encountered some
occurences where a type-1 or a type-2 reset occurs individually;
thus, we are able to measure their features separately. Type-1 reset
has only the RST flag set, and random TTL value and window sizes,
while type-2 reset has the RST and ACK flags set, and cyclically
increasing TTL value and window sizes.

Once a sensitive keyword detected, the GFW sends one type-1
RST and three type-2 RST/ACK with sequence numbers X, X+1460
and X+4380 (X is the current server-side sequence number). 1 Note

1The common size of a full TCP packet is 1460 bytes. Sometimes injected packets
can fall behind a server’s response and thus, become obsolete and discarded. Sending
packets with future sequence numbers can offset this effect to a large extent.

115

IMC ’17, November 1–3, 2017, London, UK

that only type-2 resets entail forged SYN/ACK packets during the
90-second subsequent blocking period; furthermore, only type-2
resets are seen when we split a HTTP request into two TCP packets.
From all of the above, we speculate that the type-2 resets are from
more advanced GFW instances or devices.

Numerous studies have focused on the TCP connection reset of
the GFW. Xu et al. [34] perform measurements to determine the
locations of the censor devices injecting RST packets. Crandall et
al. [11] employ latent semantic analysis to automatically generate
an up-to-date list of censored keywords. Park et al. [20] measure
the effectiveness of RST packet injection for keyword filtering on
HTTP requests and responses, and provide insights on why filtering
based on HTTP responses has been discontinued. Performing TCP
connection reset does come with shortcomings. For instance, it is
costly to track the TCP state of each and every connection and
match keywords against a massive number of TCP packets. It is
also not completely resistant to evasion.
DNS poisoning is another common technique used by the GFW [4,
5, 19]. The GFW censors the DNS requests over both UDP and
TCP. For a UDP DNS request with a blacklisted domain, it simply
injects a fake DNS response; for a TCP DNS request, it turns to the
connection reset mechanism. Our measurements also cover DNS
over TCP.

2.2 Evasion of NIDS and censorship systems
Ptacek et al. [23] have systematically studied the vulnerabilities of
NIDS in the way that NIDS construct and maintain TCP state. In
particular, NIDS maintain a TCP Control Block (TCB) for each live
connection to track its state information (e.g., TCP state, sequence
number, acknowledgment number, etc.). The goal is to replicate the
same exact connection information that exists at both endpoints.
However, in practice this is very challenging due to the following
factors:
• Diversity in host information. Due to ambiguity and updates in
TCP specifications, different OS implementations may have very
different behaviors in handling TCP packets. For instance, when
unexpected TCP flag combinations are encountered, different
OSes can behave differently (as how to handle these remains
unspecified in the standard). Another example is that RST packet
handling has drastically changed over different TCP standards
(RFC 793 to RFC 5961).

• Diversity in network information.ANIDS usually cannot learn the
network topology with respect to the endpoints it is protecting,
since the topology itself may change over time. For a LAN, a NIDS
can probe and maintain the topology. However, for a censorship
system, monitoring the massive scale of the entire Internet is
extremely challenging if at all possible. Further, such a system
will be unaware of network failures or packet losses. Thus, it
cannot judge accurately whether or not a packet has arrived at
its destination.

• Presence of middleboxes. NIDS usually are not aware of other
middleboxes that may be encountered between any pair of com-
municating endpoints. These middleboxes may drop or even alter
packets after the NIDS process them, which makes it even more
difficult to reason about how a receiver will behave.

Figure 1: Threat Model

This observation has motivated work on TCP reset attack eva-
sion. For example, Khattak et al. [17] manually crafted a fairly
comprehensive set of the evasion strategies at the TCP and HTTP
layers against the GFW and verified them successfully in a lim-
ited setting with a fixed client and server. Unfortunately, there are
a large number of factors that were not taken into account (e.g.,
different types of GFW devices may be encountered on different
network paths, various middleboxes may interfere with the evasion
strategies by dropping crafted packets).

3 MEASUREMENT OF EXISTING EVASION
STRATEGIES

Based on the fundamental limitations of NIDS outlined by Ptacek et
al. [23], the GFW’s modeling by the Khattak et al. [17], and the
implementation of the West Chamber Project [25], we divide cen-
sorship evasion strategies based on TCB-manipulations into three
high-level categories, viz., (1) TCB creation, (2) data reassembly, and
(3)TCB teardown. In this section, we perform in-depth measure-
ments to evaluate the effectiveness of existing evasion strategies,
developed based on the currently knownmodel of the GFW in these
categories.

3.1 Threat model
The threat model is depicted in Fig. 1. The client initiates a TCP con-
nection with the server. The GFW establishes a shadow connection
by creating a TCB and can read from and inject packets to the orig-
inal connection. Meanwhile, there could be network middleboxes
on the path. We refer to the middleboxes between the client and
the GFW as client-side middleboxes and the middleboxes between
the GFW and the server as server-side middleboxes.

3.2 Existing evasion strategies
The goal of current evasion strategies (listed below) is to cause the
GFW and the server to enter different states (i.e., become desynchro-
nized) by sending specially crafted packets, especially “insertion”
packets. These insertion packets are crafted such that they are ig-
nored by the intended server (or never reach the server) but are
accepted and processed by the GFW.

TCB Creation. As per previous work [17], the GFW creates a
TCB upon seeing a SYN packet. Thus the client can send a SYN
insertion packet with a fake/wrong sequence number to create a
false TCB on the GFW, and then build the real connection. The GFW
will ignore the real connection because of its “unexpected” sequence
number. The TTL (time to live) or checksum in the insertion packet,

116

IMC ’17, November 1–3, 2017, London, UK Zhongjie Wang et al.

is manipulated to prevent the acceptance of the first injected SYN
by the server—a packet with a lower TTL value would never reach
the intended server and a packet with wrong checksum would be
discarded by the server.

Data Reassembly. The data reassembly strategy has two cases:
1. Out-of-order data overlapping. Different TCP implementations

treat overlapping out-of-order data fragments in different ways.
Previous work [17] has shown that if the GFW encounters two out-
of-order IP fragments with the same offset and length, it prefers
(records) the former and discards the latter. However, with regards
to out-of-order TCP segments with the same sequence number and
length, it prefers the latter (details in [17]). This characteristic with
regards to IP fragmentation can be exploited as follows. First, a gap
is intentionally left in the payload and a fragment with offset X and
length Y , containing random garbage data is sent. Subsequently,
the real data with offset X and length Y , containing the sensitive
keyword, is sent to evade the GFW (since the GFW is expected to
choose the former packet). Finally the gap is filled by sending the
real data with offset 0 and length X . To exploit the GFW’s handling
of TCP segments, we simply switch the order of the garbage data
and the real data.

2. In-order data overlapping. When two in-order data packets
carrying IP or TCP fragments arrive, both the GFW and the server
will accept the first in-order packet that carries a specific fragment
(specified by offset/sequence number). One can then craft insertion
packets that contain junk data to fill the GFW’s receive buffer, while
making them to be ignored by the server. For example, one can craft
an insertion data packet with a small TTL or a wrong checksum;
such packets either never reach or are dropped by the server but
are accepted and processed by the GFW.

TCB Teardown. As per the known model, the GFW is expected
to tear down the TCB that it maintains when it sees a RST, RST/ACK,
or a FIN packet. One can craft such packets to cause the TCB tear-
down, while manipulating fields such as the TTL or the checksum
to ensure that the connection on the server is alive.

3.3 Experimental Setup
We employ 11 vantage points in China, in 9 different cities (Bei-
jing, Shanghai, Guangzhou, Shenzhen, Hangzhou, Tianjin, Qingdao,
Zhangjiakou, Shijiazhuang) and spanning 3 ISPs. 9 of these use the
cloud service providers (Ailyun and Qcloud) and the other two
use home networks (China Unicom). The servers are chosen from
Alexa’s top websites worldwide. We first filter out the websites
that are affected by IP blocking, DNS poisoning, or are located
inside China. We exclude the websites that use HTTPS by default,
for two reasons. First, HTTPS traffic is not currently censored by
the GFW; thus, we can already access them freely without using
any anti-censorship technique. Second, if we access these HTTPS
websites using HTTP, they send HTTP 301 responses to redirect
us to HTTPS, and the sensitive keyword is copied to the Location
header field of the response. We find that the GFW devices on some
paths can in fact detect this in the response packets. This is similar
to the HTML response censorship measured in [20]. Furthermore,
assuming that GFW devices deployed in a particular autonomous
systems (AS) usually are of the same type and version, and config-
ured with the same policy, we choose only one IP from each AS, in

order to diversify our experiments by spanning a large set of ASes.
By applying filters based on the above rules, and removing a few
slow or unresponsive websites, we finally obtain a dataset of 77
websites (from the considered 77 ASes) with Alexa ranks between
41 and 2091. We manually verify that these websites are accessible
(outside of China) and are affected by GFW’s TCP connection reset
upon containing a sensitive keyword, i.e., ultrasurf, in the HTTP
request. For each strategy and website, we repeat the test 50 times
and find the average. Since the GFW will blacklist a pair of hosts
for 90 seconds upon the detection of any sensitive keyword, we
add intervals between tests when necessary.

3.4 Results
We measure the effectiveness of existing strategies in evading the
GFW during April and May in 2017. The results are summarized in
Table 1.

Notation:We use the following notation in Table 1: Successmeans
that we receive the HTTP response from the server and receive no
reset packets from the GFW. Failure 1 means that we receive no
HTTP response from the server nor do we receive any resets from
the GFW. Failure 2 means that we receive reset packets from the
GFW, i.e., either RST (type-1) or RST/ACK (type-2).

Results. Our findings are summarized below.
• We find that, possibly because of overloading of the GFW, even if
we do not use any evasion strategy, there is a still a 2.8% success
rate with regards to retrieving sensitive content. Interestingly
this behavior was first documented in 2007 [11] and persists until
now.

• We see that TCB creation with SYN does not generally work and
has a high “Failure 2” rate (around 89%).

• With regards to data reassembly, we find that (a) out of order
data reassembly strategies have both high “Failure 1” and high
“Failure 2” rates but (b) sending in-order data to prefill the GFW’s
buffer results in a much higher success rate (typically > 80%).

• TCB teardown with FIN experiences high “Failure 2” rates while
TCB teardown with RST or RST/ACK experience around a 70%
success rate, but with a 25% chance trigger reset packets from
the GFW.
Evolution of the GFW. We believe that the primary reason for

the high failure rates with many existing strategies is because the
model of GFW assumed in previous work [17] is no longer valid.
While we defer a detailed discussion of how the model has evolved
to the next section, we point out here that the “checksum” field is
still not validated by the GFW, i.e., a packet with a wrong checksum
is still a good insertion packet (the GFW considers it to update
its TCB but the server discards it) if there’s no interference from
network middleboxes. We break down the results with regards to
the other reasons why these strategies fail, and analyze them below.

Interference from client-side middleboxes. Client-side mid-
dleboxes may drop our insertion packets. Since we manipulate
packet fields (e.g., wrong checksum, no TCP flag, etc.) to cause
the server or server-side middleboxes to discard insertion packets,
client-side middleboxes could also discard them. Thus the strategies
are voided, and will result in “Failures 2.”

117

IMC ’17, November 1–3, 2017, London, UK

Strategy Discrepancy w/ sensitive keyword w/o sensitive keyword
Success Failure 1 Failure 2 Success Failure 1

No Strategy N/A 2.8% 0.4% 96.8% 98.9% 1.1%

TCB creation with SYN TTL 6.9% 4.2% 88.9% 95.3% 4.7%
Bad shecksum 6.2% 5.1% 88.7% 93.5% 6.5%

Reassembly out-of-order data IP fragments 1.6% 54.8% 43.6% 45.1% 54.9%
TCP segments 30.8% 6.5% 62.6% 92.8% 7.2%

Reassembly in-order data

TTL 90.6% 5.7% 3.7% 95.1% 4.9%
Bad ACK number 83.1% 7.5% 9.5% 93.5% 6.5%
Bad checksum 87.2% 1.9% 10.8% 98.4% 1.6%
No TCP flag 48.3% 3.3% 48.4% 97.1% 2.9%

TCB teardown with RST TTL 73.2% 3.2% 23.6% 94.7% 5.3%
Bad checksum 63.1% 7.6% 29.3% 89.5% 10.5%

TCB teardown with RST/ACK TTL 73.1% 3.2% 23.7% 97.1% 2.9%
Bad checksum 68.9% 1.9% 29.2% 98.2% 1.8%

TCB teardown with FIN TTL 11.1% 1.0% 87.9% 99.4% 0.6%
Bad checksum 8.4% 0.8% 90.7% 99.0% 1.0%

Table 1: Probing the GFW from 11 vantage points with 77 websites; experiments are repeated 50 times for each client/server
pair.

Packet Type Aliyun(6/11) QCloud(3/11) China Unicom SJZ(1/11) China Unicom TJ(1/11)
IP fragments Discarded Reassembled Reassembled Reassembled

Wrong TCP checksum Pass Pass Pass Dropped
No TCP flag Pass Pass Pass Dropped
RST packets Pass Sometimes dropped Pass Pass
FIN packets Sometimes dropped Pass Dropped Dropped

Table 2: Client-side middlebox behaviors

On the other hand, some NAT or state/sequence checking fire-
walls deployed on the client-side of the network might intercept
and accept the insertion packets and change their maintained con-
nection state. In such cases, later packets will not go through these
middleboxes, resulting in “Failures 1.” For example, if a RST packet
tears down the connection on a client-side middlebox which it
traverses, the middlebox blocks later packets on that connection.

Some client-side middleboxes may discard IP fragments (wrt
data reassembly strategies) and cause “Failures 1.” Others buffer
and reassemble them into a whole IP packet and this might cause
“Failures 2” depending on the implementation of the middlebox.

We probed for client-side middleboxes from all our 11 vantage
points trying to connect with our own servers. As shown in Table 2,
we found that our 6 clients using Aliyun were unable to send out
IP fragments. One can conclude within reason that Aliyun has
configured its middleboxes to discard certain kinds of IP fragments.
We found that connections from the other 5 nodes encounter client-
side middleboxes, which reassemble the IP fragments into a full IP
packet containing the original HTTP request; thus these packets
were deterministically captured by the GFW. Since we found that
most of the routers and/or middleboxes interfere with IP-layer
manipulations, we argue that this is not as generally applicable as
TCP-layer manipulations for evasion.

The vantage point in Tianjin China Unicom has client-side mid-
dleboxes that drop packets with wrong TCP checksums or con-
taining no TCP flag; thus these two strategies did not work at that
point. Finally, we found Aliyun sometimes drops FIN insertion pack-
ets and QCloud sometimes drops RST insertion packets. Both the
clients in Shijiazhuang and Tianjin (China Unicom) have client-side
middleboxes that drop FIN insertion packets.

Interference from server-side middleboxes. Server-side mid-
dleboxes only affect the server but not the GFW. Our insertion
packet may terminate the connection or change the connection
state on the server-side middleboxes causing later packets to be
blocked by the middleboxes. This will cause “Failures 1.” To ver-
ify interference from server-side middleboxes, we need to either
control the server or set up our own server on the same path be-
hind those middleboxes, which are infeasible in practice for all our
targets, i.e., the Alexa’s top websites.

Other reasons for failures. There could be a few other reasons
for observing failures of the two types. Network or server failures
although rare could occur. We performed microscopic studies of
our failure cases and list the cases that we observed below.

Variations in server implementations. We find that with some
server implementations (e.g., Linux versions prior to 3.8), a data
packet under “in-order data overlapping strategy” carrying no TCP
flag can sometimes be accepted by the server and thus causes “Fail-
ures 1.” With the “out-of-order data overlapping strategy,” a server

118

IMC ’17, November 1–3, 2017, London, UK Zhongjie Wang et al.

might accept the junk data (just like the GFW) and discard the
correct packet.

Network dynamics. Since routes are dynamic and could change
unexpectedly, the TTL values used in the insertion packets to pre-
vent them reaching the server could be incorrect. As a result, they
may reach the server and disrupt the connection (Failures 1). In
other cases, the insertion packets might not reach the GFW and
lead to “Failures 2.” We also found that packet losses on the net-
work could affect the insertion packets and cause “Failures 2.” We
cope with such dynamics by repeating the sending of the insertion
packets thrice with 20ms intervals.

Summary. Our measurement uses real web servers instead of
controlled servers in order to represent cases of daily web browsing.
The results demonstrate the complexity induced by many factors
(e.g., middlebox interference, server diversity, network diversity,
etc.). We showcase the overall success rates with existing evasion
strategies and enumerate possible reasons for the failure cases.
To fully untangle the factors causing failures and to quantify the
impact of each, more in-depth analysis and controlled experiements
are required (e.g., using controlled replay server as in [18]), which
we leave for future work.

4 EVOLVED GFW BEHAVIORS
As alluded to in § 3, high failure rates were experienced even if we
eliminated the effects from middleboxes, server implementations,
and network dynamics. To understand the root cause, we take a
closer look and argue that this is due to evolved GFW behaviors
that break many prior assumptions. Based on our measurements,
we hypothesize these new behaviors as follows. To verify these
hypotheses, in § 7 we design and extensively evaluate new evasion
strategies.

Prior Assumption 1: The GFW creates a TCB only upon seeing
a SYN packet.

To test this assumption, we used pairs of clients and servers
under our control, and executed partial TCP 3-way handshakes (e.g.,
intentionally omitting the SYN, SYN/ACK and/or ACK) followed
by a HTTP request with a sensitive keyword. If a correct TCB
was created on the GFW, the HTTP request would trigger TCP
reset packets from it. First, our results confirmed that the GFW
still creates a TCB upon seeing a SYN packet as described in [17].
Second and more interestingly, we found that the GFW also creates
a TCB upon seeing a SYN/ACK packet without the SYN packet. We
speculate that the GFW has evolved to incorporate this feature to
counter SYN packet losses. Given these, we hypothesize that the
GFW exhibits the following new behavior.

Hypothesized New Behavior 1: The GFW creates a TCB not only
upon receiving SYN packets, but also SYN/ACK packets.

Prior Assumption 2: The GFW uses the sequence number in the
first SYN packet to create a TCB, and ignores later SYN packets during
the lifetime of the TCB.

This assumption is based on the rationale that the GFW mimics
a normal TCP implementation. Our closer look revealed that it
does not. From the results in § 3, we see that the TCB creation
with a SYN insertion packet failed in most cases. This leads us to
re-examine this case. We send multiple SYN packets among which
only one has the “true” sequence number, and then send a sensitive

HTTP request. However, no matter where we put the “true” SYN
packet, the GFW can always detect the later sensitive keyword.
We hypothesize that this could be because of any of three possible
reasons:
• (1) the GFW establishes multiple TCBs, one for each SYN packet;
• (2) the GFW enters a “stateless mode”, in which it checks every
individual packet instead of re-assembling the data first (and
check for a sensitive keyword);

• (3) the GFW uses the sequence number in the HTTP request to
re-synchronize its TCB.

To check (1), we set the sequence number in the HTTP request to
be a “out-of-window” value with respect to the sequence numbers
in the SYN packets; however, we find that the GFW can still detect
the keyword. To examine (2), we split the sensitive keyword into
halves, each of which by itself is not a sensitive keyword; however,
we find that the GFW can still detect it. For (3), before sending the
HTTP request, we send some random data with a “false” sequence
number, and then we send the HTTP request with “true” sequence
number; the GFW cannot detect it in this case. This suggests that
the GFW re-synchonrizes its TCB with the sequence number in
the random data, and thus, ignores the later HTTP request because
of its out-of-window sequence number. This validates hypothesis
(3) that the GFW enters a “re-synchronization state” upon seeing
multiple SYN packets. We further validate this extensively in § 7.

Besides multiple SYN packets, we found that multiple SYN/ACK
packets or a SYN/ACK packet with an incorrect acknowledgment
number can also cause the GFW to enter the re-synchronization
state.

Next, we try to find out “which packet the GFW uses to re-
synchronize its TCB once in re-synchronization state.” From the
previous experiement, we learn that the GFW re-synchronizes using
data packets from the client to the server. Thus, instead, we try to
use data packets from the server to the client; in addition, we try
pure ACK packets without data in both directions. We find none of
these packets affect the GFW. However, we do find that a SYN/ACK
packet from the server to the client can cause re-synchronization.
We admit that the cases we found may not be complete but it
is hard to enumerate an exhaustive set of these cases. However,
our measurements lead us to a better understanding of the GFW
behavior than what exists today and leads us to the following new
hypothesis.

Hypothesized New Behavior 2: The GFW enters what we call
the “re-synchronization state”, where it re-synchronizes its TCB using
the information in the next SYN/ACK packet from server to client
or data packet from client to server upon experiencing any of the
following three cases: (a) it sees multiple SYN packets from client-side,
(b) it sees multiple SYN/ACK packets from server-side, or (c) it sees a
SYN/ACK packet with an acknowledgment number different from the
sequence number in the SYN packet.

Prior Assumption 3: The GFW tears down a TCB when it sees a
RST, RST/ACK or FIN packet.

The results in § 3 suggest that the evolved GFW generally does
not tear down a TCB merely upon seeing FIN packets. At the same
time, we also observed high failure rates of above 20% with our RST
and RST/ACK insertion packets. A closer look suggests that this

119

IMC ’17, November 1–3, 2017, London, UK

probably is due to “Hypothesized New Behavior 2.” More specif-
ically, we found that when the GFW is in the newly discovered
“re-synchronization state”, its TCB sometimes cannot be torn down
with RST or RST/ACK packets. To verify this, we force the GFW
to enter the re-synchronization state using one of the techniques
above, and then immediately send a RST packet and a HTTP re-
quest with sensitive keyword. However, the GFW sometimes can
still detect it. We repeated the experiement at different times with
multiple pairs of clients and servers, and found inconsistency be-
tween different measurements across pairs at different times. The
overall success rate is roughly 80%, and for a specific client-server
pair, the GFW’s behavior is usually consistent during a certain pe-
riod (although not always across periods). We are unable to unearth
the explicit reason behind at this time; we conjecture that it is due
to dynamics with regards to the heterogeneity in the types of GFW
encountered and the complexity of interactions among different
GFW instances and middleboxes. We discuss this further in § 8.

In addition, we performed extensive measurements wherein we
sent a RST packet between the SYN/ACK and the ACK packet of the
3-way handshake, and also after the 3-way handshake. We found
that in both cases the TCB sometimes is not torn down but the
RST packet caused the GFW to enter the re-synchronization state;
further, we find that this happens way more frequently for the for-
mer case (the exact reason for the discrepancy remains unknown).
These observations lead to the following new hypothesis.

Hypothesized New Behavior 3: Upon receiving a RST or
RST/ACK packet, the GFW may enter the re-synchronization state
instead of tearing down the TCB.

5 NEWWAYS TO EVADE THE GFW
In this section, we discuss new opportunities for evasion from two
perspectives. First, based on the new hypothesized behaviors of
the GFW, we propose new evasion strategies. Second, we attempt
to systematically discover new insertion packets (besides wrong
checksum or small TTL).

5.1 Desynchronize the GFW
First of all, we describe a building block to counter the re-
synchronization state in the GFW. It is helpful in supporting our
new evasion strategies, which are discussed next. Specifically, when
we expect that the GFW is in the re-synchronization state (this can
be forced), we send a insertion data packet with a sequence num-
ber that is out of window. Once the GFW synchronizes with the
sequence number in this insertion packet, subsequent legitimate
packets of the connection will be perceived to have sequence num-
bers that are out of window, and thus be ignored by the GFW.
We say that now the GFW is desynchronized from the connection.
Note that the insertion data packet is ignored by the server since it
contains an out-of-window sequence number.

Desynchronizing the GFW drastically helps improve the “TCB
Teardown” and the “In-order Data Overlapping” strategy that still
work relatively well but occasionally experience undesired high
“Failure 1” and “Failure 2” rates.

5.2 New Evasion Strategies
Our evasion strategies are primarily based on exploiting the newly
discovered state of the GFW.We propose two new evasion strategies
along with improvements to two existing strategies.2 We evaluate
these extensively in § 7. The two new strategies are as follows:

Resync + Desync. To coerce the GFW into entering the re-
synchronization state, the client sends a SYN insertion packet after
the 3-way handshake. Subsequently, the client sends a 1-byte data
packet containing an out-of-window sequence number to desyn-
chronize the GFW. This is then followed by the real request. Note
that the SYN insertion packet cannot be sent prior to receiving
the SYN/ACK packet, as the GFW will eventually resynchronize
the expected client-side sequence number based on the ACK num-
ber of the SYN/ACK. In addition, the SYN insertion packet should
take a sequence number outside of the expected receive window
of the server (as in older Linux this can cause the connection to
reset). Newer versions of Linux will never accept such a SYN packet
regardless of its sequence number and will simply respond with
a challenge ACK [7]. In addition, we can craft the insertion SYN
packets with small TTL in case the server or middleboxes interfere.

TCB Reversal. As discussed, the GFW currently only censors
traffic from the client to the server (e.g., HTTP/DNS requests), and
the censorship of HTTP response has been discontinued except
in a few rare cases [20]. When the GFW first sees a SYN/ACK, it
assumes that the source is the server and the destination is the client.
It creates a TCB to reflect that this is the case. It will now monitor
data packets from the server to the client (mistakenly thinking
that it is monitoring data packets from the client to the server). To
exploit this property, the client will first send a SYN/ACK insertion
packet. It later performs the TCP three way handshake in a normal
way. The GFW will ignore these handshake packets since there
already exists a TCB for this connection. Note that the SYN/ACK
insertion packet has to be crafted with care. In normal cases, the
server responds with a RST which causes a teardown of the original
TCB at GFW. To address this, one of the discrepancies (e.g., lower
TTL) will need to be used in the insertion packet. In addition, we
point out that here the SYN/ACK and subsequent SYN packet from
the client do not trigger the GFW to enter the resynchronization
state.

5.3 New Insertion Packets
All GFW evasion strategies require injecting additional packets or
modifying existing packets to disrupt the TCP state maintained on
GFW [17, 23]. Insertion packets are especially handy as they are the
most suitable for supporting evasion strategies against the GFW.

As alluded to in §3, insertion packets can be tricky to craft. They
may fail because of many reasons such as network dynamics, rout-
ing asymmetry, obscure network middleboxes, and variations in
server TCP stacks. Our observation is that none of the insertion
packets are universally good. This motivates us to discover addi-
tional insertion packets that may be viable and complementary to
existing insertion packets.

2For brevity we only describe the new strategies in this section and leave the detailed
discussion of improved strategies to §7.

120

IMC ’17, November 1–3, 2017, London, UK Zhongjie Wang et al.

TCP State GFW State TCP Flags Condition
Any Any Any IP total length > actual length
Any Any Any TCP Header Length < 20
Any Any Any TCP checksum incorrect
SYN_RECV ESTABLISHED/RESYNC RST+ACK Wrong acknowledgement number
SYN_RECV/ESTABLISHED ESTABLISHED/RESYNC ACK Wrong acknowledgement number
SYN_RECV/ESTABLISHED ESTABLISHED/RESYNC Any Has unsolicited MD5 Optional Header
SYN_RECV/ESTABLISHED ESTABLISHED/RESYNC No flag TCP packet with no flag
SYN_RECV/ESTABLISHED ESTABLISHED/RESYNC FIN TCP packet with only FIN flag
SYN_RECV/ESTABLISHED ESTABLISHED/RESYNC ACK Timestamps too old

Table 3: Discrepancies between GFW and server on ignoring packets – candidate insertion packets

The ideal solution to discovering insertion packets is to obtain a
precise TCP model for the GFW, the server, and network middle-
boxes that can be fed into an automated reasoning engine (to see
what kinds of packets can qualify as insertion packets). However,
since the GFW is a blackbox with only one observable feedback
attribute (viz., the RST injection), it is quite hard to infer its inter-
nal state accurately and completely. The evolved GFW model that
we infer in §4 is also unlikely to be complete. Therefore, even if
one were to leave network middleboxes aside, the problem is very
challenging.

Our solution is as follows: instead of attempting to model the
GFW accurately, we first model the servers (e.g., popular Linux
and FreeBSD TCP stacks) using “ignore” paths analysis. By this
we mean that we want to identify and reason about points in a
server’s TCP implementation which cause it to ignore received
packets. Specifically, for an incoming packet, we analyze all pos-
sible program paths that lead to the packet being either discarded
completely, or “ignored” possibly with an ACK sent in response. An
example of the first case is a packet with an incorrect checksum; the
second case can be a data packet with an out-of-window sequence
number, which triggers a duplicate ACK [21]. In both cases, the
TCP state (e.g., the next expected sequence number) of the host
(server) remains unchanged. After we derive this server model, we
use it to develop probing tests against the GFW.

For open source operating systems such as Linux, this can be
achieved through static analysis similar to what is done in Pack-
etGuardian [8]. The challenge is to manually identify all program
points where “ignore” events occur. Once the ignore paths are iden-
tified, the constraints that lead to each path need to be computed,
and used to guide test packets against the GFW. Once we iden-
tify cases where the packets are “accepted” by the GFW, i.e., the
GFW updates its TCB according to the information in the packet,
we can conclude that such packets are effective insertion packets
(note that we have not yet considered interference from network
middleboxes).

During the analysis, we only need to consider the TCP states
that still have the potential to receive data, i.e., TCP_LISTEN,
TCP_SYN_RECV, TCP_ESTABLISHED. For instance, we omit the
TIME_WAIT state because the server can no longer receive data in
this state and it is fruitless to understand its ignore paths. After we
generate the ignore paths of the server for each TCP state, we first
generate a sequence of packets that lead to the specific TCP state;
then for the set of constraints generated for each ignore path, we

generate one or more test packets (as candidate insertion packets).
Note that each ignore path will lead to a unique reason for why the
packet will be ignored by the server (e.g., either wrong checksum
or invalid ACK, but never both). Ptacek et al. [23] used a similar
approach to study the FreeBSD TCP stack, which is unfortunately
too old to be applicable. In contrast, we study the latest Linux TCP
stack, which has many new behaviors. Further, we improve the
methodology by pruning a number of “ignore” paths in irrelevant
TCP states such as TIME_WAIT, as well as correlating the “ignore”
cases with middlebox behaviors.

As a demonstration, we conduct such an analysis of Linux kernel
version 4.4. In Table 3, we list the confirmed cases in which Linux
ignores a packet but the GFW does not. We also try to compare
the server state with the GFW state to make the discrepancies
more clear. Note that this is a more complete list than what was
previously reported [17, 23], demonstrating the advantage of our
systematic analysis. For instance, the finding includes two new
insertion packets:

1) RST/ACK packets with incorrect ACK number are ignored by the
server in TCP_RECV state but GFW will accept such a packet and
change its state to either TCP_LISTEN (previous state terminated)
or TCP_RESYNC, depending on the GFW model.

2) Packets with unsolicited MD5 headers are ignored by the server
(if no prior negotiation of optional MD5 authentication has been
done) while GFW will process the packet as normal.

TheMD5 header [15] discrepancy can be exploited in an insertion
packet with any TCP flag. For example, this can be used in a RST
packet to tear down the TCB on the GFW, or in a data packet to
fool the GFW into changing its maintained client sequence number.

Note that we intentionally omit the analysis of data overlapping
(for processing out-of-order and overlapping data packets) discrep-
ancies as it has been understood that different OSes may employ
different strategies [23] and thus it may not lead to a safe insertion
packet.
Cross-validationwith networkmiddleboxes. Even though the
insertion packets generated from the analysis work well according
to our experiments, they may not play well with middleboxes. Note
that IP layer discrepancies such as wrong IP checksum, IP optional
header, and IP header length can be used under all TCP states for
all TCP flags, but packets with such properties are often dropped
by routers or middleboxes. The only feature that we find useful is
the one where the “IP total length” is larger than the “actual packet
length” (listed in Table 3); however, packets with this feature may

121

IMC ’17, November 1–3, 2017, London, UK

still be checked and dropped by some middleboxes. Even insertion
packets that leverage TCP layer discrepancies (such as those relating
to improper TCP header lengths or the wrong TCP checksum)
may still be dropped by middleboxes, especially in cases where the
perturbation applies to all TCP states and flags. The only exceptions
are insertion packets leveraging the unsolicited MD5 header; these
are never dropped by the middleboxes we encounter during our
experiments (presumably because it requires a stateful firewall
middlebox to understand when such packets should be dropped).

The remainder of the insertion packets can be useful only for
data packets. Effective control packets cannot be crafted with these;
for instance, when the server is in the ESTABLISHED state, even
if the RST/ACK has a wrong ACK number or old timestamp, it
will still be able to reset the connection successfully. According to
our experiments, we have not encountered middleboxes that drop
packets with unexpected MD5 options, old timestamps, or incorrect
ACK numbers.
Cross-validation with other TCP stacks. It is difficult, if not
impossible, to exhaustively test the ignore paths of all deployed
TCP stacks. We cross-validate the ignore paths of Linux kernel 4.4
with several other popular Linux versions, including 4.0, 3.14, 2.6.34,
and 2.4.37. We summarize the results here:
• In Linux 3.14, when a connection is in the ESTABLISHED state,
an incoming packet with a SYN flag will be ignored, while the
new GFW model will accept it.

• In Linux 2.6.34 and 2.4.37, when a connection is in ESTABLISHED
state, an incoming packet without a set ACK flag will not be
ignored. Instead, a data packet without the ACK flag will in fact
be accepted. This indicates that such an insertion packet will not
work against older Linux versions.

• In Linux 2.4.37, an incoming packet with an unsolicited MD5
header will not be ignored. This is due to the fact that older
Linux versions have not implemented the feature proposed in
RFC 2385 [15]. Upon closer inspection, the MD5 option check
on the server can be turned off via kernel compilation options
and therefore the corresponding insertion packet in fact may not
always work.
This shows most insertion packets are applicable to a wide range

of Linux operating systems, with some minor exceptions (if the
encountered Linux version is too old). As Linux is dominant in the
server market [26], we envision that evasion strategies built on top
of these insertion packets will work well. Indeed, as we show in
§7, our GFW evasion success rate is extremely high if we are to
leverage these insertion packets properly. To discover additional
discrepancies and perform automatic “ignore path” analysis, we
plan to use selective symbolic execution in the future (e.g., S2E [9]).
We leave a more rigorous analysis of TCP stacks of other Linux
versions and operating systems, including closed-source OS like
Windows Server, to our future work.

6 INTANG
All the strategies described in § 3 and § 4, are together integrated
in a unified measurement driven censorship evasion tool we call
INTANG. 3 The implementation contains roughly 3.3K lines of C
3INTANG source code is publicly available at https://github.com/seclab-ucr/INTANG.

Figure 2: INTANG and its components

code and some analysis scripts written in Python. INTANG is de-
signed as an extensible framework that supports add-on strategies.
The components of INTANG are depicted in Fig. 2.
Overview. INTANG’s functionalities are divided into three threads,
viz., the main thread, the caching thread, and the DNS thread. The
main thread is time-sensitive, and all time-consuming operations
are pushed to the other two threads. The main thread runs a packet
processing loop which intercepts certain packets using the netfilter
queue [6] and injects insertion packets using raw sockets. While
the packets are being processed, they are held in the queue i.e., are
not sent out until the processing is complete.

When a new connection is initiated, INTANG chooses the most
promising strategy based on historical measurement results (with
the help of caching), to a particular server IP address. Upon the
completion of a successful trial, it caches the strategy ID along with
the four-tuple of the connection in memory. When it later receives
further packets associated with the four-tuple, it will invoke the
callback functions of the strategy to process the incoming and
outgoing packets. Usually, only a small set of specific packets (e.g.
SYN/ACK packet, HTTP request) are relevant to each strategy and
need monitoring (as discussed earlier).
DNS forwarder. The DNS thread is a specialized thread that aims
at converting DNS requests over UDP to DNS requests over TCP. As
mentioned in § 2.1, TCP-layer evasion not only helps with evading
censorship on HTTP connections, but can also support the eva-
sion of DNS poisoning by GFW. For this purpose, a simple DNS
forwarder is integrated within INTANG. It converts each DNS over
UDP request to a DNS TCP request and sends it to an unpolluted,
public DNS resolver (likely outside of China). We apply the same set
of strategies for the TCP connection that carries DNS requests and
responses, to prevent the GFW from resetting the connection upon
detecting a censored domain in the request. The main thread inter-
cepts outgoing DNS UDP requests, which may contain sensitive
domain names and redirects such requests to the DNS thread that
does the forwarding. When a DNS TCP response is received, it will
be converted back to a DNS UDP response and processed normally
by the application. So it is completely transparent to applications.
We have probed GFW with Alexa’s top 1 million domain names to
generate a list of poisoned domain names using the same method
as in [12].

122

https://github.com/seclab-ucr/INTANG

IMC ’17, November 1–3, 2017, London, UK Zhongjie Wang et al.

Figure 3: Combined Strategy: TCBCreation +Resync/Desync Figure 4: Combined Strategy: TCB Teardown + TCB Reversal

Strategies. Each evasion strategy dictates specific interception
points (i.e., the types of packets to intercept) and the corresponding
actions to take at each point (e.g., inject an insertion packet). A
new strategy can be derived from our suite of basic strategies by
implementing new logic in the callback functions registered as
interception points. A strategy can decide on whether to accept or
to drop an intercepted packet, and can also modify the packet. It
can craft and inject new packets as well.
Caches. INTANG employs Redis [24] as an in-memory key-value
store. Redis provides desirable features like data persistency, event-
driven programming, key expiration, etc. We also maintain in the
main thread, a transient Least Recently Used (LRU) cache imple-
mented using linked lists and hash tables (to reduce Redis store
access latency that typically involves inter-thread or inter-process
communications). Caching allows us to understand the effective-
ness of the strategies against different websites and converge on
the best one quickly. Of course, to counter changes in the network
or the server, the cached record is retained only for a certain period
of time before expiration. We omit the details of cache management
in the interest of space.

7 EVALUATION
We now extensively evaluate the hypothesized new behaviors of
the GFW discussed in §4 using the new strategies described in §5
and our tool INTANG. We use the same 11 vantage points and 77
web servers as discussed in §3; unless otherwise specified, all other
measurement settings remain the same to ensure the consistency
of the results. The experiments were conducted during April and
May, 2017. In addition, since the GFW not only censors outbound
traffic but also inbound traffic (both are client-to-server traffic),4
we conduct measurements from 4 vantage points outside China,
viz, in US, UK, Germany, and Japan, using instances on Amazon
EC2, to targets inside China. This dataset includes top 33 Chinese
websites chosen from the same Alexa’s top 10,000 websites using
the same method as in § 3.3 except they are inside China. By doing
the bi-directional evaluation, we are in hope to examine if our

4A possible reason for doing this could be achieving bi-directional information barriers
such as censoring what outsiders can see or restricting certain services, e.g., VPN.

new hypotheses/strategies work well for both directions and the
implementations/policies of the GFW in both directions are the
same.

7.1 Evading HTTP censorship
There are 4 basic strategies that we evaluate in this subsection.
These include two improved strategies based on previous strategies.
These still worked but had high “Failure 1” and “Failure 2” rates.
Specifically, they are TCB Teardown with RST and In-order Data
Overlapping. The other two are new strategies viz., Resync-Desync
and TCB Reversal. Note that these latter strategies explicitly leverage
the new features that only exist in the evolved GFW model. We
combine them with the aforementioned existing strategies that
work for the old GFW model, in order to defeat both GFW models
(i.e., the objective is to defeat the GFW regardless of whether an
old GFW model or an evolved model is encountered, or both).

Making old strategies robust.Wemake the TCB Teardown with
RST strategy more robust by integrating within it, the sending
of a “desynchronization packet” mentioned in §4. We send this
desynchronization packet right after the RST packet(s) and before
the legitimate HTTP request, to address the case wherein the GFW
enters the “resynchronization state” due to the RST packets. We
improve the reliability of the In-order Data Overlapping strategy by
using more carefully chosen insertion packets to reduce potential
interference from middleboxes, or because of hitting the server.

Accounting for both old and new GFWmodels.We combine
the Resync-Desync strategywith the TCB Creation with SYN strategy.
The latter can evade the old GFW model by causing the creation of
a false TCB, while the former can desynchronize the evolved GFW
model by forcing them into the resynchronization state first. Specif-
ically, as illustrated in Fig. 3, we will send two SYN insertion packets
(both with wrong sequence numbers), one before the legitimate
3-way handshake and one after, and followed by a desynchroniza-
tion packet and then the HTTP request. Note that the first SYN
insertion packet followed by the legitimate SYN does also cause
an evolved GFW to enter the resynchronization state; however, it
is later resynchronized with SYN/ACK packet. We therefore need
another SYN insertion packet after the handshake to cause the

123

IMC ’17, November 1–3, 2017, London, UK

Vantage Points Strategy Success Failure 1 Failure 2
Min Max Avg. Min Max Avg. Min Max Avg.

Inside China

Improved TCB Teardown 89.2% 98.2% 95.8% 1.7% 6.7% 3.1% 0.0% 5.4% 1.1%
Improved In-order Data Overlapping 86.7% 97.1% 94.5% 2.9% 8.9% 4.4% 0.0% 5.2% 1.1%
TCB Creation + Resync/Desync 88.5% 98.1% 95.6% 1.9% 7.0% 3.3% 0.0% 5.5% 1.1%
TCB Teardown + TCB Reversal 90.2% 98.2% 96.2% 1.7% 5.6% 2.6% 0.0% 5.7% 1.1%
INTANG Performance 93.7% 100.0% 98.3% 0.0% 3.0% 0.9% 0.0% 3.5% 0.6%

Outside China

Improved TCB Teardown 85.6% 92.9% 89.8% 4.6% 7.6% 6.8% 0.3% 6.8% 3.5%
Improved In-order Data Overlapping 89.4% 96.0% 92.7% 1.3% 6.2% 3.6% 0.6% 7.0% 3.7%
TCB Creation + Resync/Desync 78.1% 95.6% 84.6% 2.4% 18.6% 12.9% 0.9% 4.0% 2.6%
TCB Teardown + TCB Reversal 84.6% 93.1% 89.5% 5.5% 8.7% 7.1% 0.1% 7.9% 3.3%

Table 4: Success rate of new strategies

evolved GFW devices to “re-transition” into the resynchronization
state.

We combine the TCB Reversal strategy with the TCB Teardown
with RST strategy. Specifically, as shown in Fig. 4, we first send a
fake SYN/ACK packet from the client to the server to create a false
TCB on the evolved GFW device. Next, we establish the legitimate
3-way handshake, which invalid with respect to the evolved GFW
due to the existing TCB. Then we send a RST insertion packet to
teardown the TCB on the old GFW model, followed by the HTTP
request.

Avoiding interference from middleboxes or server. When
crafting “insertion” packet, we choose the insertion packets wisely
so as to not experience interference from the middleboxes, and not
result in side-effects on the server. We primarily use TTL-based
insertion packets since it is generally applicable. The key challenge
here is to choose an accurate TTL value to hit the GFW, while
not hitting server-side middleboxes or servers. We do that by first
measuring the hop count from the client to the server using a
way similar as tcptraceroute. Then, we subtract a small δ from the
measured hop count, to try and prevent the insertion packet from
reaching (hitting) the server-side middleboxes or the server. In
our evaluation, we heuristically choose δ = 2, but INTANG can
iteratively change this to converge to a good value.

In addition, we exploit the newMD5 and old timestamp insertion
packets, which allow the bypassing of the GFW without interfering
with middelboxes or the server. Table 5 summarizes how we choose
insertion packets for each type of TCP packet.

Packet Type TTL MD5 Bad ACK Timestamp
SYN �
RST � �
Data � � � �

Table 5: Preferred construction of insertion packets

Results.Wefirst analyze the results for individual evasion strate-
gies. As seen from Table 4, the overall “Failure 2” rate is as low as
1% for all the strategies, which (a) show that our new strategies
have a high success rate on the GFW which suggests that (b) our
hypotheses with regards to the GFW evolution seem accurate.

We find that both the Failures 1 and Failures 2 always happen
with regards to a few specific websites/IPs. One can presume that

this is caused by some unknown GFW behavior or middlebox in-
terference. However, since these cases are not sustained (are very
rare), we argue that this is more likely to be due to middlebox
interference.

Overall, we find that high Failure 1 rates is the major reason
for overall low success rates. An introspective look suggests that
because some servers/middleboxes accept packets regardless of the
(wrong) ACK number or the presence of the MD5 option header,
Failures 1 happen. Further, the TTL chosen is sometimes inaccurate
due to (a) network dynamics or (b) hitting server-side middleboxes;
this results in undesired side-effects that increase “Failures 1”.

In addition, we find that for vantage points outside China, the
TTL discrepancy unfortunately has a significant drawback. When
accessing the servers in China, the GFW devices and the desired
servers are usually within a few hops of each other (sometimes co-
located). As a result it is extremely hard to converge to a TTL value
for the insertion packet, that satisfies the requirement of hitting the
GFW but not the server. As a consequence, in these scenarios, use
of this discrepancy can cause either type of failures. We see from
Table 4 that both the Failure 1 and Failure 2 rates are on average a
bit higher than for the vantage points inside China.

Finally, because INTANG can choose the best strategy and in-
sertion packets for each server IP based on historic results, we also
evaluated INTANG performance in an additional row in Table 4 for
vantage points inside China. It shows an average success rate of
98.3% which represents the performance with the optimal strategy
specific to each website and network path. This is without further
optimizing our implementation (e.g., measuring packet losses and
adjusting the level of redundancy for insertion packets).

Take away: While we do magnify the causes for failures, the
biggest take away from this section is that our new hypothesized
behaviors of the GFW seem to be fairly accurate, and that the
new strategies are seemingly very effective in realizing the goal of
evading the GFW, especially when the best strategies are chosen
according to websites and network paths.

7.2 Evading TCP DNS Censorship
The GFW censors UDP DNS requests with DNS poisoning. It cen-
sors TCP DNS requests by injecting RST packets just like how it
censors HTTP connections. Thus, our evasion strategies can also
be used to help evade TCP DNS censorship. As discussed in §6,
INTANG converts UDP DNS requests into TCP DNS requests. To

124

IMC ’17, November 1–3, 2017, London, UK Zhongjie Wang et al.

DNS resolver IP except Tianjin All
Dyn 1 216.146.35.35 98.6% 92.7%
Dyn 2 216.146.36.36 99.6% 93.1%

Table 6: Success rate of TCP DNS censorship evasion

evaluate the effectiveness of our strategies on evading TCPDNS cen-
sorship, we use 2 public DNS resolvers from Dyn, and the same 11
vantage points in China. Google’s DNS resolvers 8.8.8.8 and 8.8.4.4
have been IP hijacked by the GFW and thus cannot be used. By
repeatedly requesting a censored domain, (e.g., www.dropbox.com)
100 times, using the “improved TCB Teardown with RST strategy,”
we get the results shown in Table 6. The vantage points in Tianjin
have low success rates of 38% and 24%. However, the others jointly
yield success rates of over 99.5 %. Interestingly, we accidentally
discover that if we use the TCP DNS through the two OpenDNS’s
DNS resolvers 208.67.222.222 and 208.67.220.220, even without ap-
plying INTANG we do not experience any censorship from any of
our vantage points.

7.3 Tor and VPN
Tor is famous for supporting anonymous communications [22],
and poses a serious threat to censorship. It is not surprising that
it is reported that the GFW has been blocking Tor Bridge nodes
through passive traffic analysis and active probing for more than
7 years [28]. Next, we examine if INTANG can help cover up Tor
connections.

In our experiments, we first verify whether and how Tor nodes
are blocked by the GFW. Subsequently, we test if INTANG can help
clients from China evade Tor censorship.

We try to access hidden Tor bridge nodes setup on Amazon EC2
in the US from the same 11 vantage points (over 9 cities) (See § 3)
inside China acting as Tor clients. Surprisingly, we find that there
are four vantage points (in three cities Beijing, Zhangjiakou, and
Qingdao) from which Tor connections to the hidden Tor bridge can
operate without issues (as is) for over 2 days with periodic, manually
generated traffic. Meanwhile, any hidden bridge nodes requested by
the remaining 7 vantage points triggers active probing [13, 31] and
are immediately blocked by the GFW, i.e., any node in China can no
longer connect to this IP via any port. This is very different from
what was previously reported i.e., the GFW only blocks the Tor port
on that hidden bridge [31], and could cause collateral damage as
the Amazon EC2 IPs are recycled. We test 5 different hidden bridge
IPs and find no exceptions so far. The common characteristic of
the first four locations is that they are all in Northern China. Thus,
we speculate that Tor-filtering GFW nodes are most probably not
encountered on the paths from this region.

Now, for the remaining vantage points where the Tor connec-
tions do trigger censorship blocking, we apply INTANG with the
“improved TCB teardown strategy,” five times each, and the success
rate for the Tor connections is 100 %. We periodically repeat these
experiments over a 9-hour period, and are able to keep using the Tor
bridge node. This shows that: (a) our hypothesis that some of the
GFW devices have evolved to a new model holds; and (b) INTANG
is extremely effective in crafting the right measurement-driven
strategy towards evading the GFW. We envision that Tor clients

can even integrate INTANG in the future to improve its censorship
evasion chances.

Similar to Tor, virtual private networks (VPN), which help users
evade censorship, are also popular targets of the GFW. It is shown
that there are multiple approaches used by the GFW to disconnect
VPNs [30, 33]. They include DPI, IP address blocking, bandwidth
throttling, etc. In November 2016, we set up an openvpn server in
China, and used one node in America as a client. As per our experi-
mental results, a preliminary version of INTANG helped openvpn
over TCP evade censorship, while openvpn without INTANG was
disconnected due to the client receiving a reset packet from the
GFW during the handshake phase (the GFW seemingly used DPI).
Unfortunately, we could not replay such experiments recently via
either the PPTP protocol or with the openvpn protocol. Both proto-
cols did not experience disconnections because of the GFW, nor did
they suffer from rate limits imposed by the GFW. Unfortunately,
we do not yet know what caused this change in behavior and we
plan to continue monitoring the potential opportunity of applying
INTANG to improve VPN stability.

8 DISCUSSION
GFW Countermeasures. Our work is based on the latest devel-
opments of the GFW. It is certainly possible that GFWmay undergo
additional improvements to defeat our evasion strategies, and we
acknowledge that it is an arms race. For instance, we demonstrate
that GFW is more liberal in accepting RST packets than normal
servers. It is possible that the censor may perform additional checks
on the RST packets (e.g., checksum and MD5 option fields) as a de-
fense. But that may open up a new evasion attack on the GFW (e.g.,
when the server does not check MD5 option fields). One can also
leverage GFW’s agnostic nature to network topology. For example,
we can measure the exact TTL value to bypass the GFW while
not to reach the server (although it is also a challenge to achieve
accuracy and efficiency simultaneously).

Another potential improvement the GFW can make is to trust
the data packet sent by the client only after seeing the server’s ACK
packet acknowledging the appropriate sequence number. However,
this will greatly complicates the GFW’s design and implementation.

In summary, we believe this is an arms race. As GFW evolves,
so can the evasion strategies. We believe that the cost of rolling
out new GFW models is quite high and such evolution will happen
at the timescale of months (if not years), which leaves enough
time for evasion strategy development (especially when tools like
INTANG are leveraged). For instance, as soon as the GFW evolves,
a new GFW model will be derived and subjected to the “ignore
path” analysis, which can lead to the generation of new evasion
strategies.
Complexity and (sometimes) inconsistency of theGFW. Dur-
ing our long-term study of the GFW since 2015, we have observed
that type-1 and type-2 resets sometimes occur individually. For
example, on certain days, from a vantage point in CERNET Beijing
we could observe only type-1 resets, while on other days, both types
were seen. Our observations indicate that the two types of GFW
devices are usually deployed together, and sometimes one is down.
Also, we found there were some rather intricate effects when the
two types were working together. During a measurement in May

125

IMC ’17, November 1–3, 2017, London, UK

2016, we found the type-1 GFW devices also have a subsequent
90-second blocking period (which it normally does not) as the type-
2 devices does, after we using our new strategy to evade type-2
devices. And when we used no strategies, only the type-2 reset can
be observed (i.e., type-1 devices are not enforcing the 90-second
blocking period). It looked like the type-2 reset suppressed type-1
reset. This rare behavior is not observed during other measure-
ments. Furthermore, in May 2016 and May 2017, we have observed
that RST packets sometimes were unable to tear down the TCB
on the GFW, with different pairs of controlled clients and servers.
This inconsistent behavior could be due to load balancing among
different versions of the GFW, or some intricate effects caused by
several GFW devices deployed together. However, we have no way
to obtain the ground truth. We acknowledge our measurements
are largely limited by being agnostic to the interference among
different versions of GFW devices (or even middleboxes) and to the
way how they are deployed, in addition to the blackbox nature of
the GFW device itself. We are interested in further exploring this
complexity and inconsistency in our future work.
Combination of Strategies. The GFW is heterogeneous with
different co-existing versions. As a result, as we did in this paper, it
is necessary to combine strategies that are effective against different
versions of the GFW. This is normally not an issue as long as the
strategies are not in conflict with each other. However, it is likely
that the “Failure 1” rate will increase when a plurality of strategies
are employed. This is because of the increase in insertion packets,
which increases the likelihood of middlebox interference or side-
effects on the server.
Ethical Considerations. All our experiments are carefully de-
signed so as to not cause disruption to normal network operations.
All connections are established from machines that we rent or con-
trol directly. The additional insertion packets are simply regular
TCP packets (sometimes with incorrect field values) and may sim-
ply be discarded by the server. We control the traffic to each website
to be low to avoid any unintended denial-of-service.

Note that INTANG doesn’t guarentee unobservability for all its
strategies. It is the user’s discretion as to whether to use INTANG
within the censor’s jurisdiction. However, in China, due to heavy
censorship [16], “crossing the wall” and accessing websites such
as Google, Facebook, etc. has become a prevalent need. The censor
usually punishes those who provide censorship circumvention ser-
vices to the masses (e.g., proxy/VPN providers) instead of punishing
the users of the service. A client-side only tool like INTANG will
be harder for the censor to trace and thwart.

9 RELATEDWORK
We have already alluded to various related efforts throughout the
paper (especially in § 2). They all focus on evaluating the censor-
ship techniques or anti-censorship techniques aided by additional
facilities, like VPN.

Clayton et al., propose to ignore the RST packets sent by the
GFW [10]. This requires cooperation from the server-side, and is
thus impractical (all servers will need to install a patch to do that).
It does not prevent the censor from monitoring user traffic. Thus,
we do not explicitly consider this in our work. As discussed earlier,

Ptacek et al. [23], develop a deep understanding of the vulnera-
bilities of current NIDS, which has largely influenced later efforts
(including ours) on TCP reset attack evasion. The West Chamber
Project [25] is a censorship-circumvention tool that implemented
the Ptacek et al.’s theory. However, it just uses two kinds of crafted
packets to teardown the TCB on the GFW from both directions,
and has now become ineffective.

Khattak et al.’s research [17] is the most relevant work to ours.
Their strategies, and the problems thereof were already discussed
in § 3. In addition, our measurement utilizes multiple vantage points
instead of one vantage point as in [17]. Our measurement study
leads to the discovery of the differences in deployment and features
of the GFW from what was presented in that work. Li et al. [18]
tested known TCP/IP insertion packets against censorship firewalls
and DPI boxes in three countries and evaluated their effectiveness.
In contrast, our work focuses on understanding and uncovering
the latest development (new state machine) of the largest and most
complex censorship system, which allows us to devise new evasion
strategies.

10 CONCLUSION
In this paper we undertake, arguably, the most in depth measure-
ment study of stateful (TCP-level) Internet censorship evasion on
the GFW of China. Our work is divided into multiple stages. First,
we perform extensive measurements of prior approaches and find
that they are no longer effective. We attribute the reasons for this to
two primary causes: (a) the GFW has evolved to imbibe new behav-
iors and, (b) the presence of middleboxes on the path between the
client and the server that can interfere with the evasion strategies.
Second, based on the knowledge gained, we hypothesize about
new GFW behaviors and design new strategies that can possibly
evade GFW today. We also build a novel, measurement driven tool
INTANG that can converge on the right evasion strategy for a given
client server pair. In the final stage, we perform extensive measure-
ments of our new strategies and INTANG, and demonstrate that
they provide near-to-perfect evasion rates when combined, thereby
validating our new understanding of the GFW’s stateful censorship
model of today.

ACKNOWLEDGMENTS
This work was supported by Army Research Office under Grant
No. 62954CSREP and the National Science Foundation under Grant
No. 1464410, 1652954, and 1652954. We thank our shepherd Prof.
Alan Mislove and the anonymous reviewers for their constructive
comments towards improving the paper.

REFERENCES
[1] Giuseppe Aceto and Antonio Pescapé. 2015. Internet Censorship detection: A

survey. Computer Networks 83, C, 381–421. https://doi.org/10.1016/j.comnet.2015.
03.008

[2] Daniel Anderson. 2012. Splinternet Behind the Great Firewall of China. Queue
10, 11, Article 40, 10 pages. https://doi.org/10.1145/2390756.2405036

[3] Anonymous. 2009. Evaluation and Problems of IntrusionDetection System. (2009).
Retrieved August 7, 2017 from http://www.chinagfw.org/2009/09/gfw_21.html

[4] Anonymous. 2012. The Collateral Damage of Internet Censorship by DNS
Injection. ACM SIGCOMM Computer Communication Review 42, 3, 21–27.
https://doi.org/10.1145/2317307.2317311

[5] Anonymous. 2014. Towards a Comprehensive Picture of the Great Firewall’s
DNS Censorship. In 4th USENIX Workshop on Free and Open Communications on

126

https://doi.org/10.1016/j.comnet.2015.03.008
https://doi.org/10.1016/j.comnet.2015.03.008
https://doi.org/10.1145/2390756.2405036
http://www.chinagfw.org/2009/09/gfw_21.html
https://doi.org/10.1145/2317307.2317311

IMC ’17, November 1–3, 2017, London, UK Zhongjie Wang et al.

the Internet (FOCI ’14). USENIX Association, San Diego, CA. https://www.usenix.
org/conference/foci14/workshop-program/presentation/anonymous

[6] Pablo Neira Ayuso. [n. d.]. Netfilter Queue Project. ([n. d.]). Retrieved August 7,
2017 from http://www.netfilter.org/projects/libnetfilter_queue/

[7] Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao, Srikanth V. Krishnamurthy,
and Lisa M. Marvel. 2016. Off-Path TCP Exploits: Global Rate Limit Consid-
ered Dangerous. In 25th USENIX Security Symposium (USENIX Security 16).
USENIX Association, Austin, TX, 209–225. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/cao

[8] Qi Alfred Chen, Zhiyun Qian, Yunhan Jack Jia, Yuru Shao, and Zhuoqing Morley
Mao. 2015. Static Detection of Packet Injection Vulnerabilities: A Case for Identi-
fying Attacker-controlled Implicit Information Leaks. In Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security (CCS ’15).
ACM, New York, NY, USA, 388–400. https://doi.org/10.1145/2810103.2813643

[9] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2012. The S2E Plat-
form: Design, Implementation, and Applications. ACM Transactions on Computer
Systems (TOCS) 30, 1, Article 2, 49 pages. https://doi.org/10.1145/2110356.2110358

[10] Richard Clayton, Steven J. Murdoch, and Robert N. M. Watson. 2006. Ignoring
the Great Firewall of China. In Proceedings of the 6th International Conference on
Privacy Enhancing Technologies (PET ’06). Springer-Verlag, Berlin, Heidelberg,
20–35. https://doi.org/10.1007/11957454_2

[11] Jedidiah R. Crandall, Daniel Zinn, Michael Byrd, Earl Barr, and Rich East. 2007.
ConceptDoppler: A Weather Tracker for Internet Censorship. In Proceedings of
the 14th ACM Conference on Computer and Communications Security (CCS ’07).
ACM, New York, NY, USA, 352–365. https://doi.org/10.1145/1315245.1315290

[12] Haixin Duan, Nicholas Weaver, Zongxu Zhao, Meng Hu, Jinjin Liang, Jian Jiang,
Kang Li, and Vern Paxson. 2012. Hold-on: Protecting against on-path DNS
poisoning. InWorkshop on Securing and Trusting Internet Names (SATIN).

[13] Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas Weaver, and
Vern Paxson. 2015. Examining How the Great Firewall Discovers Hidden Circum-
vention Servers. In Proceedings of the 2015 Internet Measurement Conference (IMC
’15). ACM, New York, NY, USA, 445–458. https://doi.org/10.1145/2815675.2815690

[14] Phillipa Gill, Masashi Crete-Nishihata, Jakub Dalek, Sharon Goldberg, Adam
Senft, and Greg Wiseman. 2015. Characterizing Web Censorship Worldwide:
Another Look at the OpenNet Initiative Data. ACM Transactions on the Web
(TWEB) 9, 1, Article 4, 29 pages. https://doi.org/10.1145/2700339

[15] Andy Heffernan. 1998. Protection of BGP Sessions via the TCP MD5 Signature
Option. RFC 2385. https://tools.ietf.org/html/rfc2385

[16] OpenNet Initiative. 2012. China | ONI Country Profile. (2012). Retrieved August
7, 2017 from https://opennet.net/research/profiles/china

[17] Sheharbano Khattak, Mobin Javed, Philip D. Anderson, and Vern Paxson. 2013.
Towards Illuminating a Censorship Monitor’s Model to Facilitate Evasion. In
Presented as part of the 3rd USENIX Workshop on Free and Open Communications
on the Internet (FOCI ’13). USENIX, Washington, D.C. https://www.usenix.org/
conference/foci13/workshop-program/presentation/Khattak

[18] Fangfan Li, Abbas Razaghpanah, Arash Molavi Kakhki, Arian Akhavan Niaki,
David Choffnes, Phillipa Gill, and Alan Mislove. 2017. lib•erate,(n): A library for
exposing (traffic-classification) rules and avoiding them efficiently. In Proceedings
of the 2017 Internet Measurement Conference (IMC ’17). ACM, London, UK. https:
//doi.org/10.1145/3131365.3131376

[19] Graham Lowe, Patrick Winters, and Michael L Marcus. 2007. The Great DNS Wall
of China. Technical Report. https://censorbib.nymity.ch/pdf/Lowe2007a.pdf

[20] Jong Chun Park and Jedidiah R. Crandall. 2010. Empirical Study of a National-
Scale Distributed Intrusion Detection System: Backbone-Level Filtering of HTML
Responses in China. In Proceedings of the 2010 IEEE 30th International Conference
on Distributed Computing Systems (ICDCS ’10). IEEE Computer Society, Washing-
ton, DC, USA, 315–326. https://doi.org/10.1109/ICDCS.2010.46

[21] Jon Postel. 1981. Transmission Control Protocol. RFC 793. https://tools.ietf.org/
html/rfc793

[22] The Tor Project. [n. d.]. The Tor Project. ([n. d.]). Retrieved August 7, 2017 from
https://www.torproject.org

[23] Thomas H. Ptacek and Timothy N. Newsham. 1998. Insertion, Envasion, and
Denial of Service: Eluding Network Intrusion Detection. Technical Report. http:
//www.icir.org/vern/Ptacek-Newsham-Evasion-98.ps

[24] Redis. [n. d.]. The Redis Project. ([n. d.]). Retrieved August 7, 2017 from
http://redis.io/

[25] scholarzhang. 2010. West Chamber Project. (2010). Retrieved August 7, 2017
from https://code.google.com/p/scholarzhang/

[26] Zain Shamsi, Ankur Nandwani, Derek Leonard, and Dmitri Loguinov. 2014. Her-
shel: Single-packet Os Fingerprinting. In The 2014 ACM International Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS ’14). ACM, New
York, NY, USA, 195–206. https://doi.org/10.1145/2591971.2591972

[27] Michael Carl Tschantz, Sadia Afroz, David Fifield, and Vern Paxson. 2016. SoK:
Towards Grounding Censorship Circumvention in Empiricism. In 2016 IEEE
Symposium on Security and Privacy (SP). 914–933. https://doi.org/10.1109/SP.2016.
59

[28] twilde. 2012. Knock Knock Knockin’ on Bridges’ Doors. (January
2012). Retrieved August 7, 2017 from https://blog.torproject.org/blog/
knock-knock-knockin-bridges-doors

[29] John-Paul Verkamp and Minaxi Gupta. 2012. Inferring Mechanics of Web
Censorship Around the World. In Presented as part of the 2nd USENIX Work-
shop on Free and Open Communications on the Internet (FOCI ’12). USENIX,
Bellevue, WA. https://www.usenix.org/conference/foci12/workshop-program/
presentation/Verkamp

[30] VPNanswers.com. 2015. Bypass The Great Firewall And Hide Your OpenVPN
In China. (2015). Retrieved August 7, 2017 from https://www.vpnanswers.com/
bypass-great-firewall-hide-openvpn-in-china-2015/

[31] Philipp Winter and Stefan Lindskog. 2012. How the Great Firewall of China
is Blocking Tor. In Presented as part of the 2nd USENIX Workshop on Free and
Open Communications on the Internet (FOCI ’12). USENIX, Bellevue, WA. https:
//www.usenix.org/conference/foci12/workshop-program/presentation/Winter

[32] Eric Wustrow, Scott Wolchok, Ian Goldberg, and J. Alex Halderman. 2011. Telex:
Anticensorship in the Network Infrastructure. In Proceedings of the 20th USENIX
Conference on Security (SEC ’11). USENIX Association, Berkeley, CA, USA, 30–30.
http://dl.acm.org/citation.cfm?id=2028067.2028097

[33] Eva Xiao. 2016. Behind The Scenes: Here’s Why Your VPN Is Done In
China. (2016). Retrieved August 7, 2017 from http://technode.com/2016/03/
17/behind-scenes-heres-vpn/

[34] Xueyang Xu, Z. Morley Mao, and J. Alex Halderman. 2011. Internet Censorship in
China: Where Does the Filtering Occur?. In Proceedings of the 12th International
Conference on Passive and Active Measurement (PAM ’11). Springer-Verlag, Berlin,
Heidelberg, 133–142. http://dl.acm.org/citation.cfm?id=1987510.1987524

127

https://www.usenix.org/conference/foci14/workshop-program/presentation/anonymous
https://www.usenix.org/conference/foci14/workshop-program/presentation/anonymous
http://www.netfilter.org/projects/libnetfilter_queue/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cao
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cao
https://doi.org/10.1145/2810103.2813643
https://doi.org/10.1145/2110356.2110358
https://doi.org/10.1007/11957454_2
https://doi.org/10.1145/1315245.1315290
https://doi.org/10.1145/2815675.2815690
https://doi.org/10.1145/2700339
https://tools.ietf.org/html/rfc2385
https://opennet.net/research/profiles/china
https://www.usenix.org/conference/foci13/workshop-program/presentation/Khattak
https://www.usenix.org/conference/foci13/workshop-program/presentation/Khattak
https://doi.org/10.1145/3131365.3131376
https://doi.org/10.1145/3131365.3131376
https://censorbib.nymity.ch/pdf/Lowe2007a.pdf
https://doi.org/10.1109/ICDCS.2010.46
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://www.torproject.org
http://www.icir.org/vern/Ptacek-Newsham-Evasion-98.ps
http://www.icir.org/vern/Ptacek-Newsham-Evasion-98.ps
http://redis.io/
https://code.google.com/p/scholarzhang/
https://doi.org/10.1145/2591971.2591972
https://doi.org/10.1109/SP.2016.59
https://doi.org/10.1109/SP.2016.59
https://blog.torproject.org/blog/knock-knock-knockin-bridges-doors
https://blog.torproject.org/blog/knock-knock-knockin-bridges-doors
https://www.usenix.org/conference/foci12/workshop-program/presentation/Verkamp
https://www.usenix.org/conference/foci12/workshop-program/presentation/Verkamp
https://www.vpnanswers.com/bypass-great-firewall-hide-openvpn-in-china-2015/
https://www.vpnanswers.com/bypass-great-firewall-hide-openvpn-in-china-2015/
https://www.usenix.org/conference/foci12/workshop-program/presentation/Winter
https://www.usenix.org/conference/foci12/workshop-program/presentation/Winter
http://dl.acm.org/citation.cfm?id=2028067.2028097
http://technode.com/2016/03/17/behind-scenes-heres-vpn/
http://technode.com/2016/03/17/behind-scenes-heres-vpn/
http://dl.acm.org/citation.cfm?id=1987510.1987524

	Abstract
	1 Introduction
	2 Background
	2.1 On-path censorship systems
	2.2 Evasion of NIDS and censorship systems

	3 Measurement of existing evasion strategies
	3.1 Threat model
	3.2 Existing evasion strategies
	3.3 Experimental Setup
	3.4 Results

	4 Evolved GFW Behaviors
	5 New Ways to Evade the GFW
	5.1 Desynchronize the GFW
	5.2 New Evasion Strategies
	5.3 New Insertion Packets

	6 INTANG
	7 Evaluation
	7.1 Evading HTTP censorship
	7.2 Evading TCP DNS Censorship
	7.3 Tor and VPN

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

