
Snowflake, a censorship circumvention system

using temporary WebRTC proxies

(Draft September 25, 2023)

Cecylia Bocovich Arlo Breault David Fifield Serene Xiaokang Wang

Authors are listed alphabetically.

Abstract

Snowflake is a system for circumventing Internet censorship.

Its blocking resistance comes from the use of numerous, ultra-

light, temporary proxies (“snowflakes”), which accept traffic

from censored clients using peer-to-peer WebRTC protocols

and forward it to a centralized bridge, which does the real work

of directing traffic to its destination. The temporary proxies

are lightweight enough to be implemented in JavaScript, in a

web page or browser extension, making them vastly cheaper to

set up than a traditional proxy or VPN server. The proxies do

not need to have stable network addresses, nor be continually

online—even the disappearance of an in-use proxy does not

mean the end of a circumvention session, as its client will

switch to another on the fly, invisibly to upper network layers.

Snowflake has been deployed with success in Tor Browser

and Orbot for several years. It has been significant for circum-

vention during high-profile network disruptions, including in

Russia in 2021 and Iran in 2022. In this paper, we explain the

composition of Snowflake’s many parts, give a history of de-

ployment and attempts to block it, and reflect on implications

for circumvention generally.

1 Introduction

Censorship circumvention systems—systems to enable net-

work communication despite interference by a censor—may

be characterized on multiple axes. Some systems imitate a

common network protocol; others try not to look like any pro-

tocol in particular. Some distribute connections over numerous

proxy servers; others concentrate on a single proxy that is, for

one reason or another, difficult for a censor to block. What all

circumvention systems have in common is that they strive to

increase the cost to the censor of blocking them—whether that

cost be in research and development, human resources, and

hardware; or in the inevitable overblocking that results when

a censor tries to selectively block some connections but not

others. Snowflake, the subject of this paper, is a circumvention

system that uses thousands of temporary proxies and makes

switching between them easy and fast. On the spectrum of

imitation to randomization, Snowflake falls on the side of im-

itation; on the scale from diffuse to concentrated, it is diffuse.

What most sets Snowflake apart is that it pushes the idea of

distributed, disposable proxies to an extreme: its proxies can

run in a web browser and censored clients communicate with

them using WebRTC.

WebRTC is a suite of protocols intended for real-time com-

munication applications in web browsers [1]. Video and voice

chat are typical examples of WebRTC applications. Snowflake

exchanges WebRTC data formats in the course of establish-

ing a connection, and uses WebRTC protocols for traversal

of NAT (network address translation) and communication be-

tween clients and proxies. Crucially for Snowflake, WebRTC

APIs are available to JavaScript code in web browsers, meaning

it is possible to implement a proxy in a web page or browser

extension. WebRTC is also usable outside a browser, which is

how we implement the Snowflake client program and alterna-

tive, command line–based proxies.

As is usual in circumvention research, we assume a threat

model in which clients reside in a network controlled by a cen-

sor. The censor has the power to inspect and interfere with traf-

fic that crosses the border of its network; typical real-world cen-

sor behaviors include inspecting IP addresses and hostnames,

checking packet contents for keywords, blocking IP addresses,

and injecting false DNS responses or TCP RST packets. The

client wants to communicate with some destination outside the

censor’s network, possibly with the aid of third-party proxies.

The censor is motivated to block the specific contents of the

communication, or even the destination itself. The censor is

aware of the possibility of circumvention, and therefore seeks

to block not only direct communication, but also indirect com-

munication by way of a proxy or circumvention system. We

consider circumvention accomplished when the client can re-

1

liably reach any proxy, because the proxy, outside the censor’s

control, can forward the client’s communication to any destina-

tion. (In Snowflake, we separate the roles of temporary proxies

and a stable long-term bridge, but the idea is the same.) Work-

ing in the client’s favor is the fact that the censor is presumed to

derive benefit from permitting some forms of network access:

the censor does not trivially “win” simply by shutting down all

communication, but must be selective in its blocking decisions

in order to optimize some objective of its own. The art of

censorship circumvention is forcing the censor into a dilemma

of overblocking or underblocking, by making circumvention

traffic difficult to distinguish from traffic that the censor prefers

not to block.

Snowflake originates in two earlier projects: flash proxy

and uProxy. Flash proxy [9], like Snowflake, used a model

of untrusted, temporary JavaScript proxies in web browsers;

then, the link between client and proxy was WebSocket rather

than WebRTC. (WebSocket still finds use in Snowflake, but on

the proxy–bridge link, not the client–proxy link.) Flash proxy

was deployed in Tor Browser from 2013 to 2016, but never

saw much use, probably because the reliance on WebSocket,

which does not have built-in NAT traversal like WebRTC does,

required users to perform a cumbersome port forwarding pro-

cedure. WebRTC was at the time an emerging technology, and

while it had been considered as a future transport protocol for

flash proxy, we decided to start Snowflake as an independent

project. uProxy [36], in one of its early incarnations, pioneered

the use of WebRTC proxies for circumvention. uProxy’s prox-

ies were browser-based, but its trust and deployment models

were different from flash proxy’s and Snowflake’s. Each cen-

sored client would arrange, out of band, for a personal acquain-

tance, outside the censor’s network, to run a proxy in their web

browser. The trust relationship was necessary to prevent mis-

use, because the browser proxies fetched destination content

directly, which means activity by the client would be attributed

to the proxy operator. A uProxy proxy was expected to be

persistent and always online; clients did not change proxies on

the fly. uProxy supported protocol obfuscation: the communi-

cations protocol was fundamentally WebRTC, but the contents

of packets could be transformed so as not to resemble Web-

RTC. This obfuscation was possible because uProxy ran as a

privileged browser extension with access to real sockets. Since

Snowflake uses ordinary unprivileged browser APIs, its Web-

RTC can only look like WebRTC; on the other hand, because

of that, Snowflake proxy are even easier to deploy. Like flash

proxy, uProxy was active in the years 2013–2016.

Among existing circumvention systems, the one that is most

similar to Snowflake is MassBrowser [25]. It features multiple

circumvention techniques, one of which is proxying though

volunteer proxies, called buddies. MassBrowser’s architecture

is similar to Snowflake’s: there is a centralized component

that coordinates connections between clients and buddies, cor-

responding to a piece in Snowflake called the broker; buddies

play the same role as our proxies. The trust model is intermedi-

ate between Snowflake’s and uProxy’s. Buddies preferentially

operate as one-hop proxies, as in uProxy, but are not limited

to proxying only for trusted friends. To deter misuse, buddies

specify a policy of what categories of content they are willing

to proxy. Buddies also support forwarding to a Tor bridge,

as in Snowflake, but this option is used only as a last resort,

in keeping with MassBrowser’s principle of prioritizing block-

ing resistance and performance over privacy and anonymity.

An innovation in MassBrowser not present in Snowflake is

client-to-client proxying: clients may act as buddies for other

clients, the logic being that what is censored for one client

may not be censored for another. The buddy software is a

standalone application, not constrained by a web browser en-

vironment, and can, like uProxy, use protocol obfuscation on

the client–buddy link.

Protozoa [2] and Stegozoa [12] show ways of building a

point-to-point covert tunnel over WebRTC, the former by re-

placing the encrypted parts of encoded media frames with its

own ciphertexts, the latter using video steganography. Designs

like these might serve as alternatives for the link between client

and proxy in Snowflake. Significantly, where Snowflake now

uses WebRTC data channels, Protozoa and Stegozoa are built

around WebRTC media streams, which may be an advantage

in blocking resistance. We will have more to say on this point

in Section 3.

It is not our purpose to disproportionately emphasize the

limitations of other circumvention systems and the advantages

of Snowflake. Circumvention research is a cooperative enter-

prise, and we recognize and support our colleagues who are

pursuing and maintaining their own designs. While challenges

remain, today’s circumvention systems by and large serve their

intended purpose, and are a vital element of day-to-day Internet

access for many people. With Snowflake, we have explored a

different point in the design space, one with its own advantages

and disadvantages. We acknowledge that Snowflake will be a

better choice in some censorship environments and worse in

others; indeed, one of the ideas we hope to convey is that block-

ing resistance can be meaningfully understood only in relation

to a particular censor and its resources, costs, and motivations.

In this paper we present the design of Snowflake, discuss var-

ious challenges and considerations, and reflect on over three

years of deployment. As of August 2023, Snowflake supports

an estimated average 70,000 concurrent users and transfers over

30 TB of circumvention traffic per day.

2 How it works

A Snowflake proxy connection proceeds in three phases. First,

there is rendezvous, in which a client indicates its need for

circumvention service and is matched with a temporary proxy.

Rendezvous is facilitated by a central server called the broker.

Then, there is connection establishment, where the client and

its assigned proxy connect to each other with WebRTC, using

2

Figure 1: Architecture of Snowflake. The client contacts the broker through a special channel with high blocking resistance.

The broker assigns the client a compatible proxy from among those currently polling. The client and proxy connect to one

another using WebRTC. The proxy connects to the bridge, then begins copying traffic between the client and the bridge. Session

state is established at the client and the bridge, so that it may be resumed on a different proxy if interrupted.

information exchanged during rendezvous. Finally, there is

data transfer, where the proxy ferries data between the client

and the bridge. The bridge takes responsibility for directing the

client’s traffic to its eventual destination (in our case, by feeding

it into the Tor network). Figure 1 illustrates the process.

These phases repeat as needed, as temporary proxies go

offline. A circumvention session is not tied to any single proxy.

A client builds a session over a series of proxies, switching

to a new one whenever the current one stops working. State

variables stored at the client and the bridge ensure the session

can pick up where it left off. The change of proxies is invisible

to the applications using Snowflake (except, perhaps, for a brief

delay while rendezvous takes place again): the Snowflake client

presents an abstraction of a single, uninterrupted connection.

It does not avail a censor to block the broker or bridge,

because Snowflake clients never contact either directly. Clients

reach the broker over an indirect rendezvous channel. Access

to the bridge is always mediated by a temporary proxy.

2.1 Rendezvous

A session begins with a client sending a rendezvous message

to the broker. There is an ambient population of proxies con-

stantly polling the broker to check for new clients in need of

service. The broker matches the client with one of the currently

available proxies, subject to considerations such as compatibil-

ity of NATs.

The client’s rendezvous message is a bundle of data that

the broker users to match the client with a proxy, and that the

proxy will need in order to make a connection with the client.

The essential element is a Session Description Protocol (SDP)

offer [28], which contains the information necessary for a Web-

RTC connection, such as the client’s external IP addresses and

cryptographic details to secure a later key exchange. The bro-

ker forwards the client’s SDP offer to the proxy, and the proxy

sends back an SDP answer, containing its share of connection

details. The broker forwards the proxy’s SDP answer back

to the client. The client and the proxy then connect to each

other directly. In WebRTC terms, this offer/answer exchange

is called “signaling,” and the broker here acts as a signaling

server. To gather the information necessary to construct an of-

fer or answer, clients and proxies communicate with third-party

STUN servers before contacting the broker. We additionally

use STUN servers to identify the NAT type of clients. We will

say more about how this information is used in Section 2.2. The

contacting of STUN servers is a normal and expected part of

WebRTC, though there are fingerprinting considerations that

we discuss in Section 3.

Communication with the broker uses a “long-polling”

model. An example is shown in Figure 2. Proxies poll the

broker periodically, by making an HTTPS request to a desig-

nated URL path. The broker does not respond immediately to

a proxy poll request, but holds the connection idle for a few

seconds to see if a client rendezvous message will arrive. If not,

the broker sends a response saying “no clients” and the proxy

goes to sleep until it is time for its next poll. If a client does ar-

rive, the broker sends its SDP offer to the proxy in the response

to the proxy’s poll request. As it is now too late for the proxy to

send more information in the same HTTPS exchange, the proxy

sends its SDP answer back to the broker in a second HTTPS

request. All this happens while the client waits for a response

to its initial rendezvous message. The broker responds to the

client with the proxy’s SDP answer, simultaneously sending

an acknowledgement to the proxy. At that point rendezvous is

finished and the client and the proxy connect to one another.

The client needs to use an indirect channel, resistant to block-

ing, when communicating with the broker. What is needed, es-

sentially, is a miniature circumvention system to bootstrap into

the full system. What makes the rendezvous facet of circum-

vention different from general circumvention are its different,

3

Rendezvous message

(client’s WebRTC offer)

Rendezvous response

(forward proxy’s answer)

Poll: any pending clients?

Here is a client

(forward client’s offer)

I will serve this client

(proxy’s WebRTC answer)

Acknowledged

Poll: any pending clients?

No pending clients

ProxyBrokerClient

Figure 2: The long-polling communication model of

Snowflake rendezvous. Proxies poll periodically to check for

new clients. When the broker makes a match, the proxy gets

the client’s SDP offer, then immediately re-connects to send

back its SDP answer. It all happens during one round trip from

the client’s perspective. Not shown here is the indirect channel

used by the client to access the broker through the censor’s

zone of control (shaded background).

generally more lenient, requirements and assumptions, which

permit a larger solution space. Because rendezvous accounts

for only a small fraction of total communication volume, and it

happens only infrequently, it can afford to use techniques that

would be too slow, expensive, or complicated for real-time or

bulk data transfer. Another nice feature is that rendezvous is

separable and modular: more than one method can be used,

and the methods do not necessarily have to bear any relation

to the circumvention techniques of the main system. While

the assumption of WebRTC permeates Snowflake’s design, its

rendezvous modules are independent. We currently support

two rendezvous methods in Snowflake:

Domain fronting In this method, the client does an HTTPS

exchange with the broker by an intermediary web service

such as a CDN, taking care to change the externally visi-

ble hostname (the TLS Server Name Indication, or SNI)

from that of the broker to some other “front domain” [10].

The CDN routes the HTTPS request to the broker accord-

ing to the HTTP Host header, which remains unmodified

under the TLS encryption. The well-known drawback of

domain fronting is the high financial cost of CDN band-

width. Because we use it only for rendezvous, the cost is

much more manageable than in a system that uses domain

fronting for all its data transfer.

AMP cache AMP is a framework for web pages written in a

restricted dialect of HTML. Part of this framework is a

free-to-use cache server [27]. The cache fetches origin

web pages on demand, which means that it is effectively

as a restricted sort of HTTP proxy. If rendezvous mes-

sages are encoded to conform to AMP requirements, they

can be sent to the broker via the cache server. Ren-

dezvous through the AMP cache is not easily blocked

without blocking the cache server as a whole. This ren-

dezvous method still technically requires domain fronting,

because the AMP cache protocol would otherwise expose

the upstream server’s hostname in the TLS SNI, but it

enlarges the set of usable intermediary web services and

front domains.

Anything that can be persuaded to convey a rendezvous mes-

sage of about 1500 bytes indirectly to the broker, and return a

response of about the same size, might work as a rendezvous

module. For example, encrypted DNS (DNS over TLS or DNS

over HTTPS) would serve: the client encodes its rendezvous

message into a series of DNS queries for hostnames whose au-

thoritative resolver is the broker itself, equipped with a module

to reassemble the rendezvous message and send a response in

the form of DNS responses. A third-party recursive resolver

acts as an intermediary for the broker, while DNS encryption

hides the broker’s DNS zone from the censor.

Rendezvous is not unique to Snowflake. Other examples

of rendezvous in circumvention include the DEFIANCE Ren-

dezvous Protocol [20 §3], the facilitator interaction in flash

proxy [9 §3], and the registration proxy in Conjure [13 §4.1].

A key property of the listed systems is that they do not rely on

preshared secret information. The client needs only to acquire

the necessary software; whatever additional information is re-

quired to establish a circumvention session is exchanged dy-

namically, at runtime. A corollary of the no-secret-information

property is that an adversary—the censor—is at no special dis-

advantage in attacking the system. The censor may download

the client software, run it, study its network connections—and

the system must maintain its blocking resistance despite this.

This stands in contrast to other systems in which, preliminary

to making a connection, a client must acquire some secret,

such as a password or proxy IP address, through an out-of-

band channel presumed to be unavailable to the censor, and the

system’s blocking resistance depends on keeping that informa-

tion hidden from the censor. The disadvantage of a separate

rendezvous step is that it is one more thing to get right. Not

only the main circumvention channel but also the rendezvous

must resist blocking: the system is only as strong as the weaker

of the two.

2.2 Peer-to-peer connection establishment

Now the client and the proxy connect to each other directly.

Even in the absence of censorship, making a direct connection

between two Internet peers is not always easy, because of NAT

(network address translation) and firewalls. Snowflake clients

and proxies alike run in diverse networks that have varying

NATs and ingress policies. Fortunately for us, WebRTC is

designed with this use case in mind, and has built-in support

for traversing NAT, namely ICE (Interactive Connectivity Es-

tablishment) [19], a procedure for testing candidate pairs of

4

peer network addresses to find a pair that works. ICE makes

use of STUN (Session Traversal Utilities for NAT) [29] and

third-party STUN servers that, among other services, enable a

host to learn its own external IP addresses. The first part of ICE

has already taken place at the beginning of rendezvous, when

the client and proxy contacted STUN servers to gather external

address candidates and included them in their respective SDP

offer and answer.

There is no guarantee that any two hosts will be able to make

a connection using the facilities of STUN alone. Some address

mapping and filtering setups are simply incompatible. In the

case of an incompatible pairing, ICE would normally fall back

to using TURN (Traversal Using Relays around NAT) [31],

which is a kind of UDP proxy. Such a fallback would be

problematic for Snowflake, because the TURN relays them-

selves would become a focus of blocking by the censor. But

Snowflake has an advantage most WebRTC applications do not.

Most WebRTC applications want to connect a particular pair

of peers, whereas we are satisfied when a client can connect

to any proxy. Snowflake clients and proxies self-assess their

NAT type and report it in interactions with the broker. The

broker takes NAT compatibility into account when matching

and avoids cases that would require a fallback to TURN.

Two factors are relevant to a Snowflake client or proxy’s

ability to make a peer-to-peer connection: how its NAT maps

internal IP–port combinations to external ports, and how its

firewall filters incoming packets. For our purposes, it suffices

to condense the combinations of NAT mapping and firewall

filtering into the following well-known variations:

Full cone The same internal IP–port pair always maps to the

same external port. Any remote host may send a packet

to an internal IP address and port by sending a packet to

the mapped external port.

Restricted cone Like full cone, but incoming packets are al-

lowed only if there has recently been an outgoing packet

to the same remote IP address.

Port-restricted cone Like restricted cone, but incoming pack-

ets are allowed only if there has recently been an outgoing

packet to the same remote IP–port pair.

Symmetric The external port depends on both the internal IP–

port pair and the remote IP–port pair. Incoming packets

are allowed only if there has recently been an outgoing

packet to the same remote address.

Table 1 shows the pairwise compatibility of NAT variations.

As the incompatible cases always involve a symmetric NAT,

we further simplify matching by categorizing the variations

into the two types unrestricted (works with most other NATs)

and restricted (works only with more permissive NATs). Un-

restricted proxies may be matched with any client; restricted

proxies may be matched only with unrestricted clients. The

No NAT

Full co
ne

Rest
ric

ted
co

ne

Port-
res

tri
cte

d co
ne

Symmetr
ic

No NAT 6 6 6 6 6 


unrestricted
proxyFull cone 6 6 6 6 6

Restricted cone 6 6 6 6 6

Port-restricted cone 6 6 6 6 –



restricted
proxy

Symmetric 6 6 6 – –
︸ ︷︷ ︸ ︸︷︷︸

unrestricted
client

restricted
client

Table 1: Pairwise compatibility of NAT variants, using the

facilities of STUN alone (no fallback to TURN). The incom-

patible cases are when one peer’s NAT is symmetric and the

other’s is symmetric or port-restricted cone. Note the asym-

metry in what NAT variants we consider “restricted” in client

and proxy.

Check style guide to see if caption should be before or after a table.

broker prefers to match unrestricted clients with restricted prox-

ies, in order to conserve unrestricted proxies for the clients that

need them. Symmetric NAT is always considered restricted,

but port-restricted cone NAT differs depending on the peer:

for proxies it is restricted, but for clients it is unrestricted.

The asymmetric categorization is an approximation to further

help conserve unrestricted proxies for clients with symmetric

NATs. Though it creates the potential for an incompatible

match between a symmetric proxy and a port-restricted cone

client, port-restricted cone proxies are common in practice, and

are compatible with port-restricted cone clients. In case of a

connection failure, clients re-rendezvous and try again.

Clients and proxies self-assess their NAT type and send it

to the broker in their rendezvous messages. Clients use the

NAT behavior discovery feature of STUN [22]. Not all STUN

servers support NAT behavior discovery, but those whose ad-

dresses we ship with the Snowflake client do. Proxies cannot

use the same technique, because the necessary STUN features

are not available to JavaScript code in web browsers. Instead

we adapt a technique from MassBrowser [25 §V-A]: we run

a centralized, always-on WebRTC testing peer behind a simu-

lated symmetric NAT. Proxies try to connect to this peer; if the

connection succeeds, its type is unrestricted, otherwise it is re-

stricted. Clients and proxies retest their NAT type periodically,

to account for potential changes in their local networking en-

vironment. If a client or proxy is unable to determine its NAT

type for some reason, it reports the type “unknown,” which the

broker conservatively treats as if it were restricted.

Figure 3 shows that unrestricted proxies form a relatively

small fraction of the proxy population. In absolute terms, there

are enough, thanks in large part to the volunteers who run

the command-line version of the Snowflake proxy on networks

5

Restricted

Unknown

Unrestricted
Untested0

20,000

40,000

60,000

80,000

2021 2022 2023

U
ni

qu
e

pr
ox

y
IP

 a
dd

re
ss

es

Figure 3: Proxy NAT types, in unique IP addresses per day.

The places in 2021 and 2022 where there is an increase in the

“unknown” NAT type and a decrease in the other types were

the result of temporary operational problems with the testing

peer that proxies use to assess their NAT type.

unencumbered by NAT. Though stable, long-term proxies are

against the ethos of Snowflake, it has proved useful, as a matter

of practicality, to sacrifice a measure of address diversity for

better NAT compatibility in a common case. We can estimate

how many tries it takes a client to be matched with a proxy,

on average, by counting failed and successful rendezvous at-

tempts at the broker, under the assumption that clients repeat

rendezvous attempts until getting a match. In July 2023, unre-

stricted clients almost always got a match on the first attempt,

while restricted clients needed an average of 1.07 attempts

(standard deviation 0.05).

At the same time as the proxy makes a connection to its

assigned client, it also connects to the bridge. For this con-

nection we use the WebSocket protocol [24], which offers a

TCP-like, point-to-point, client–server connection layered on

HTTPS. The choice of protocol for the proxy–bridge link is ar-

bitrary, and could be changed without affecting the rest of the

system. The protocol does not need to be blocking-resistant;

it just needs to be available to JavaScript code in web browsers.

WebRTC would serve for this link too.

2.3 Data transfer

No complicated processing takes place at the proxy. The main

value of a Snowflake proxy is its IP address: it gives the client

a peer to connect to that is not on the censor’s address blocklist.

Having provided that, the proxy assumes a role of pure data

transfer.

Snowflake uses a stack of nested protocol layers. We will

walk though each layer and describe its purpose.

UDP 



WebRTC

data channel





ephemeral, per proxyDTLS

SCTP

KCP
}

Turbo Tunnel



persistent, per sessionsmux

Tor protocol

application streams

This is the stack for the client–proxy link, which is the place

where WebRTC is used, and which is exposed to observation

by the censor (Figure 1). The stack for the proxy–bridge link

is the same, but with WebSocket in place of the WebRTC

data channel at the top. The layers marked “ephemeral” are

skimmed off and replaced as proxies come and go. The layers

marked “persistent” are instantiated once in each circumvention

session, hold long-term state, and are end-to-end between client

and bridge.

The connection between a client and its proxy is a WebRTC

data channel [18], which provides a way to send arbitrary bi-

nary messages between peers. A data channel is its own stack

of three protocols: UDP for network transport, DTLS (Data-

gram TLS) for confidentiality and integrity, and SCTP (Stream

Control Transmission Protocol) for delimiting message bound-

aries and other features like congestion control. Working UDP

port numbers will have been discovered using ICE in the pre-

vious phase. The peers authenticate one another at the DTLS

layer using certificate fingerprints that were exchanged during

rendezvous [17 §5.1].

Data channels are well-suited to Snowflake’s needs. (The

specification even lists circumvention as a use case [18 §3.2].)

But data channels are not the only option: WebRTC also offers

media streams for unreliable transport of real-time audio and

video. Which of these is used may be a fingerprinting vector.

We will take up this topic in Section 3.

If clients only ever used one proxy, a WebRTC data channel

alone would be sufficient. But a Snowflake proxy might disap-

pear at any moment, and when that happens, its data channel

goes with it. If the client was in the middle of a long down-

load, for example, it should be possible to resume the download

without interruption after rendezvousing with a new proxy. For

this we need a shared notion of session state that exists at the

client and the bridge, not tied to any temporary proxy. A lack of

session continuity across proxy failures had been an unsolved

problem in flash proxy [9 §5.2].

We adopt the Turbo Tunnel design pattern [7] and in-

sert a userspace session and reliability protocol between the

ephemeral proxy data channels and the client’s own applica-

tion streams. This part of the protocol stack outlives any single

proxy; it belongs to the client and the bridge. Its primary func-

tion is to attach sequence numbers and acknowledgements to

packets of data, so that both ends know what parts of the data

stream need to be retransmitted after a temporary loss of proxy

connectivity. The client tags its traffic with a random session

identifier string that remains consistent throughout a session,

which the bridge uses to index a map of session variables. For

the inner session layer we use a combination of KCP [34] and

smux [37]. KCP provides reliability, and smux detects the end

of idle sessions and terminates them. KCP and smux have

shown their worth in other deployments, and are easy to pro-

gram, but there is nothing about them on which we depend

essentially. Any other transport protocol that provides the nec-

essary features and can be implemented in userspace would do,

6

such as QUIC, TCP, or (another layer of) SCTP. We prototyped

successfully with QUIC before deciding on KCP/smux.

Finally, we must specify some concrete protocol so that the

client can tell the bridge what remote destination to access on

its behalf. In our deployment, this role is played by the Tor

protocol. After stripping away the WebRTC and Turbo Tunnel

containers, the Snowflake bridge feeds the client’s data stream

into a local Tor bridge. Almost anything would work here, with

the caveat that it should be end-to-end secure between the client

and bridge, to prevent inspection or tampering by curious or

malicious proxies—Snowflake proxies are “untrusted messen-

gers” in the sense of Feamster et al. [6 §3]. Integration with Tor

has the nice feature that not even the Snowflake bridge is trusted

to see the plaintext or destination of client traffic, let alone the

temporary proxies. Using Tor also has some drawbacks, which

we will comment on in Section 4.4 and Section 6.

3 Protocol fingerprinting

Snowflake leans heavily into the “address blocking” side of

circumvention, but the “content blocking” part matters too.

The goal, as always, is to make circumvention traffic difficult

to distinguish from other traffic the censor cares not to block.

Snowflake is inherently tied to WebRTC, and can only be ef-

fective against a censor that is not willing to block WebRTC

protocols wholesale. But even within that scope, there are

many variations in how WebRTC is implemented and used,

which, if not carefully considered, might enable a censor to

selectively block only Snowflake, while leaving other uses of

WebRTC undisturbed. Unfortunately for the circumvention

developer, the richness of WebRTC protocols affords a large

attack surface for fingerprinting. Not only that, WebRTC leaves

the details of signaling—in which peers exchange information

needed to set up a connection, corresponding to Snowflake

rendezvous—unspecified [1 §3], leaving every application to

invent its own mechanism.

As WebRTC is designed for the web, most implementa-

tions of WebRTC are embedded in web browsers, and are not

easily removed from that context. Snowflake originally used a

WebRTC library extracted from Chromium, but that eventually

proved unworkable for cross-platform deployment. Since 2019,

Snowflake has used Pion [30], an independent implementation

of WebRTC not tied to any browser. This is both good and bad.

The good is greater agility and less development friction, and

a working relationship with upstream developers that enables

us to get fingerprinting-related changes made; we would not

be where we are today without it. The bad is that the Web-

RTC fingerprint of Pion does not automatically match that of

the mainly browser-originated WebRTC that Snowflake aims

to blend in with.

The following is a list of fingerprinting concerns that bear

on Snowflake, together with how we have tried to address

them. The existence of a fingerprinting vulnerability does not

automatically invalidate a circumvention system: censorship

and circumvention are a dialog, and even among demonstrable

vulnerabilities, some are more and some are less practical for

a censor to take advantage of. The important thing is to have a

solid foundation; minor flaws may be patched up as necessary.

Selection of STUN servers It is not unusual for a WebRTC

application to use STUN, but the choice of what STUN

servers to use is up to the application. Running dedicated

STUN servers just for Snowflake would not work, because

a censor would experience no collateral harm in simply

blocking them by IP address. Our deployment uses a pool

of public STUN servers that are used in applications other

than circumvention, filtered for those that support the NAT

behavior discovery feature described in Section 2.2. The

client chooses a random subset of servers from the pool

when it makes a connection; this is because not every

STUN server is accessible under every censor.

Format of STUN messages STUN is most often deployed

over plaintext UDP, which leaves its messages open to

inspection and potential fingerprinting. STUN messages

consist of a fixed header followed by a variable-length list

of ordered attributes [29 §5]. What attributes appear, and

their order, depends on the STUN implementation and

how the application uses it.

We have not done anything in particular to disguise STUN

messages. Though plaintext UDP is the most common,

STUN specifies other transports, including encrypted

ones like DTLS. These may be options for Snowflake

in the future—of course, only if they are common enough

that their use does not stick out on its own.

Rendezvous Because the rendezvous methods of Section 2.1

are modular, each one needs a separate justification as

to why it should be difficult to block. Besides that,

they must be implemented in a way that does not ex-

pose accidental distinguishers. For example, the domain

fronting and AMP cache rendezvous methods use HTTPS,

which is TLS, which means TLS fingerprinting is a con-

cern [10 §5.1]. Snowflake, like many circumvention sys-

tems, uses the uTLS package [14 §VII] to get a client TLS

fingerprint that is randomized or that imitates common

browsers. See Section 5.2 for an account of when domain

fronting rendezvous was briefly blocked in Iran, because

we were slow in activating uTLS.

Though each rendezvous method may be difficult to block

in itself, a censor might combine a low-confidence detec-

tion of rendezvous with features from other phases of the

Snowflake data exchange to strengthen its guess.

DTLS The outermost layer of a WebRTC data connection, the

protocol directly exposed to a censor, is DTLS (Datagram

TLS) over UDP. DTLS is an adaptation of TLS [33 §1]

7

to the datagram setting, and therefore inherits the finger-

printing concerns of TLS [14]. TLS/DTLS fingerprinting

may involve, for example, inspecting ClientHello mes-

sages to see what ciphersuites and extensions are used,

and their order. It may be that a certain combination is

specific to a particular implementation of a circumvention

system, and may therefore be blocked at low cost.

Due to practical considerations, Snowflake’s defenses to

DTLS fingerprinting are not very robust, and are reac-

tive rather than proactive. In the realm of TLS one may

use uTLS, but there is as yet no equivalent of uTLS for

DTLS. The present way of altering DTLS fingerprints in

Snowflake is to submit a pull request upstream to Pion

whenever a fingerprint feature used for blocking is identi-

fied. Section 5.1 documents how this has happened twice

already, in response to blocking in Russia.

Data channel or media stream Besides data channels, Web-

RTC offers media streams, in line with its intended pur-

pose of enabling real-time audio and video communica-

tion. Though both are encrypted, data channels and media

streams are externally distinguishable because they use

different containers. Data channels use DTLS, and media

streams use DTLS-SRTP; that is, the Secure Real-Time

Transport Protocol with a DTLS key exchange [32 §4.3].

Data channels are a closer match to Snowflake’s com-

munication model: media streams are meant to contain

encoded audio and video, not arbitrary binary data. But

the use of DTLS rather than DTLS-SRTP could become

a significant feature if most other WebRTC applications

use media streams. Although it would be less convenient,

it would be possible to adapt the WebRTC link between

the client and its proxy to use a media stream rather than

a data channel, either by modulating binary data into a

well-formed encoded audio or video signal in the man-

ner of, say, Stegozoa [12 §3.3], or by directly replacing

the ciphertext of SRTP packets, as in Protozoa [2 §4.4].

Fifield and Gil Epner [8] studied the network traffic of Web-

RTC applications, with the goal of revealing fingerprinting

pitfalls that might affect Snowflake, which was then in early

development. Frolov et al. [14 §V-C] observed that the un-

protected TLS fingerprint of domain fronting rendezvous was

distinctive, and introduced the uTLS package that Snowflake

now uses to protect it. MacMillan et al. [23] focused on the

DTLS handshake, comparing Snowflake to three other Web-

RTC applications. They correctly anticipated features of the

Pion DTLS handshake that would later actually be used to

block Snowflake in Russia; see more details in Section 5.1.

Chen et al. [4] combined features of rendezvous and DTLS

in order to reduce false positives. Their classifier first pre-

filters by looking for DNS queries for STUN servers in the

Snowflake client’s default pool and the default front domain

used in domain fronting rendezvous. While a single DNS query

is not strong evidence of Snowflake, several related queries sent

within a short time are more deserving of attention. They then

apply a machine learning classifier to features of any subse-

quent DTLS handshake. The authors acknowledge that DTLS

fingerprinting is fragile, as the DTLS fingerprint is, in principle,

controllable by the application. The DNS prefilter may perhaps

be mitigated by alternative rendezvous methods (Section 2.1),

or by smarter selection of STUN servers by the client.

4 Experience

Snowflake has now been in operation for a few years. In lieu

of a forward-looking evaluation, here we will take a look back

at the history of our deployment and reflect on the experience.

4.1 Client counts and bandwidth

Snowflake became available to end users gradually, reflecting

a long development process. Development began in late 2015,

and deployment in 2017, but the system only really became

usable in 2020. It began to attract large numbers of users

(enough to merit a censor’s attention) in 2022, following gen-

eralized network blocking events in Russia and Iran.

Snowflake shipped in the alpha release series of Tor Browser

before graduating to the stable series. It was first released

for GNU/Linux in Tor Browser 7.0a1 on 2017-01-24, and for

macOS in Tor Browser 7.5a4 on 2017-08-08. But we hit a road-

block in attempting to prepare releases for other platforms: the

Chromium-derived WebRTC library we had used to that point

presented major difficulties in Tor Browser’s cross-compiling,

reproducible build environment. What let us resume mak-

ing progress was a switch to Pion WebRTC [30] in 2019.

With it, we were able to release Snowflake for Windows in

Tor Browser 9.0a7 on 2019-10-01, and for Android in Tor

Browser 10.0a1 on 2020-06-02.

While at this point Snowflake was available on every plat-

form supported by Tor Browser, it was not yet comfortably

usable. There were two important parts missing: no NAT type

matching (Section 2.2) meant that a client could not always

connect to its assigned proxy; and a lack of persistent ses-

sion state (Section 2.3) meant that even if a proxy connection

was successful, the client’s session would end once that proxy

disappeared. For these reasons, by early 2020, the average

number of concurrent users had not risen above 40. The Turbo

Tunnel session persistence feature became available to users in

Tor Browser 9.5a13 on 2020-05-22. The client part of NAT

behavior detection was released with Tor Browser 10.0a5 on

2020-08-19, and the necessary proxy support was added on

2020-11-17. After these changes, Snowflake became practi-

cal for daily browsing and the number of users began to grow

into 2021.

This brings us to Figure 4, which shows the number of

Snowflake users since 2021. The number of users is estimated

8

Data error

Orbot 16.4.0
includes Snowflake

Tor Browser 10.5
includes Snowflake Onset of Tor blocking

in Russia

Tor Browser 11.5a1 and 11.0.3
alter DTLS fingerprint

Load balancing of bridge

Russian invasion of Ukraine

Bridge hardware upgrade

Tor Browser 11.5
automatic configuration

Protests in Iran

TLS fingerprint blocking in Iran

Tor Browser 11.5.6 and Orbot 16.6.3
fix TLS fingerprint

Tor Browser 12.0 adds a second bridge

Domain fronting
rendezvous
temporarily
blocked in Iran

Tor Browser 12.0.3
alters DTLS fingerprint

Bridge performance fix

0

20,000

40,000

60,000

80,000

100,000

Jan
2021

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2022

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2023

Feb Mar Apr May Jun JulA
ve

ra
ge

 s
im

ul
ta

ne
ou

s
us

er
s

0
10
20
30
40

T
B

/d
ay

Figure 4: Estimated average simultaneous Snowflake users and bandwidth by day. The values at the far left of the graph,

in early January 2021, are about 60 users and 4 GB/day.

using the aggregate statistics reported by the Tor bridge and

the formulas of Tor Metrics [21]. Tor Metrics graphs are

frequently misinterpreted. Be aware: the chart does not show

a count of unique clients, but rather the average number of

concurrent clients per day. For example, the value of 12,000 on

2022-05-01 means that, on average, 12,000 clients were using

the service at any point in time on that day. The contribution

of a client is independent of the number of temporary proxies

it uses over the course of a session.

Snowflake’s growth began in earnest when it became part

of default installations. Orbot, a mobile app that provides

a VPN-like Tor proxy, added a Snowflake client in version

16.4.0 on 2021-01-12. Snowflake graduated to Tor Browser’s

stable series in Tor Browser 10.5 on 2021-07-06, becoming a

third built-in circumvention option alongside meek and obfs4.

Being part of a stable release meant that it was easily available

to all Tor users, not a self-selected group of alpha users. The

number of users steadily increased over the next five months,

reaching almost 2,000 by December 2021.

Network censorship events may have the contrary effects

of either increasing or decreasing the number of users of a

circumvention system. The user count will decrease if the

system does not have enough resistance to prevent itself from

being caught up in the blocking; but increase if it remains

unblocked as one of a diminished number of ways to reach

the outside world. Two such censorship events, one in Russia

and one in Iran, had the effect of increasing the number of

Snowflake users by multiples. (Because they also, in part,

threatened Snowflake itself, we will have more to say about

them in Section 5.)

On 2021-12-01, some ISPs in Russia deployed measures to

block most forms of access to Tor, including Snowflake [38].

The measures varied in their effectiveness; in the case of

Snowflake, blocking was triggered by a particular feature of

the DTLS handshake, which we were able to mitigate in new

releases within a few weeks. Over the next two months the

total number of Snowflake users quadrupled, with most of

the new users coming from Russia. The sudden demand

temporarily overwhelmed the bridge, and for a few weeks

Snowflake was almost unusably slow. It forced us to rearchi-

tect the bridge for better scaling [11], as well as move the

bridge to a powerful dedicated server and upgrade its network

link from 1 Gbps to 10 Gbps. By May 2022, about 70% of

Snowflake users were in Russia. The count of users in Rus-

sia got an additional small boost, visible in the graph, starting

on 2022-07-14, when Tor Browser 11.5 added the Connection

Assist feature, which automatically enables circumvention op-

tions when needed. Another DTLS blocking signature was

reported on 2022-06-20; we did not get to fixing it until Tor

Browser 12.0.3 on 2023-02-15. By that time the global user And Or-

bot 17

on. . .
count had come to be dominated by users from Iran.

The next event that had a large effect on Snowflake usage

was the nationwide protests in Iran that started on 2022-09-21.

The government imposed periodic network shutdowns and ad-

ditional network blocking, severe even by the standards of a

country already notorious for Internet censorship [3]. Inter-

net users in Iran turned to circumvention systems that contin-

ued working despite the new restrictions, Snowflake among

them. Adoption was rapid: on 2022-09-20, Iran accounted

for only 1% of Snowflake users; on 2022-09-24 it was 67%.

The massive influx of users had us scrambling to test and

deploy performance improvements over the succeeding days.

About two weeks later, on 2022-10-04, usage dropped almost

as quickly as it had risen. The drop was caused by the cen-

sors in Iran blocking a TLS fingerprint used in rendezvous.

After we released fixes for the TLS fingerprinting issue, the

user count in Iran began to recover going into 2023. One of

the emergency performance optimizations we had deployed in

late September turned out to be a mistake and actually harmful

for performance. The problem was masked, for a time, by the

9

Browser
extension

Orbot
Standalone
Web badge
Unknown0

25,000

50,000

75,000

100,000

125,000

2021 2022 2023

U
ni

qu
e

pr
ox

y
IP

 a
dd

re
ss

es

Figure 5: Unique proxy IP addresses per day, by proxy type.

The two large steps visible in the graph correspond to the inva-

sion of Ukraine by Russia in late February 2022, and protests in

Iran beginning late September 2022, at which times there were

campaigns to encourage people to install the browser extension.

Decide how to handle the small number of remaining “Unknown” proxy

types.

great demand for the service, but starting in February 2023

the user count started to decline. We reverted the erroneous

change in mid-March, and then the count started to recover

again. Around this time, there was also a span of about a

week, and irregular brief intervals thereafter, during which the

domain used for domain fronting rendezvous was blocked in

some ISPs in Iran, an evident attempt at blocking that was,

however, not sustained.

Throughout most of this history, we ran the backend bridge

on a single server, upgrading and optimizing it as needed. But

as the bridge began to reach its hardware capacity, and perfor-

mance improvements became harder to achieve, we deployed a

second bridge to share the load. We discuss the challenges and

design considerations of doing so in Section 4.4. The second

bridge was made available to users in Tor Browser 12.0 on

2022-12-07. By July, the second bridge supported about 18%

of Snowflake users.Revisit

this when

Orbot 17

hits the

Play Store

Discuss

2023-09-20

front

domain

change.

As of 2023-07-31, Snowflake had transferred 8.1 PB of cir-

cumvention data. By this we mean goodput: Tor TLS traffic

inside the tunnel, ignoring WebRTC, WebSocket, and KCP/

smux overhead. At that time, about 1.7% of all Tor users

As of

2023-08-01,

relay

users are

currently

inflated

due to

#59.

(29% of bridge users) used Snowflake to connect to Tor.

4.2 Number and type of proxies

Snowflake’s effectiveness depends on its proxies, of which

there are several types. The primary type is the web browser ex-

tension, which, once installed, works in the background while

the browser is running. There is also a “web badge” version of

the proxy that does not require installation. It uses the same

JavaScript code as the extension, but runs in an ordinary web

page. Some people leave a browser tab idling on the web badge

page, rather than install a browser extension. Apart from the

web-based proxies, we provide a standalone, command-line

proxy that does not require a browser. This version is con-

venient to install on a rented VPS, for example. Running a

long-term proxy at a fixed IP address is somewhat at odds

with Snowflake’s goal of proxy address diversity and agility,

but these standalone proxies are valuable because they tend to

have less restrictive NATs, making them compatible with more

clients. Finally, Orbot, a mobile app for accessing Tor, besides

being able to use Snowflake for circumvention, can also provide

Snowflake proxy service to others, a feature called “kindness

mode.”

Figure 5 shows the daily counts of each proxy type. Browser

extension proxies predominate, representing about 81% of Update

percent-

age before

submis-

sion.

130,000 daily IP addresses. For comparison, there were about

2,000 of the more traditional style of Tor bridge at this time.

The difference is attributable to the relative ease of running a

Snowflake proxy versus a Tor bridge—though the comparison

is not quite direct, because Tor bridges have better defenses

against enumeration and blocking than do Snowflake proxies.

It was not clear at the outset that it would even be possi-

ble to attract enough proxies to make Snowflake meaningfully

blocking resistant and support a reasonable number of users.

Initial growth in the number of proxies depended on our de-

veloping new and easier ways to run one, while later growth

was driven by intentional advocacy and outreach. In the early

days, circa 2017, the only round-the-clock proxy support was a

few standalone proxies, run by us for the benefit of alpha tester

clients. The browser extension became available in mid-2019.

In the latter half of 2019, additional proxy capacity came when

Cupcake, a browser extension for flash proxy with an existing

user base, was repurposed for Snowflake. Orbot’s Snowflake

proxy feature was added in version 16.4.1 in February 2021.

(In Figure 5, Orbot is counted among the standalone proxies

until January 2022, when it got its own proxy type designation.)

It is worth reflecting briefly on the greater popularity of the

browser extension compared to the web badge. The latter had

been envisioned as the primary source of proxies in flash proxy,

the idea being that people’s browsers would automatically be-

come proxies while reading sites that had the flash proxy badge

installed, unless they checked an option to prevent it. We de-

cided, early on, that flash proxy’s opt-out permission had been

a mistake, and that Snowflake would be only opt-in. In order

to run a proxy, a person must to take a positive action such

as installing a browser extension or activating a toggle on a

web page. Our initial worry that this policy would reduce the

number of proxies turned out to be unfounded. People find

an informative, interactive proxy control panel more appeal-

ing than a nondescript badge graphic, and install the browser

extension in greater numbers than ever used the web badge in

flash proxy.

4.3 Proxy churn

The size of the proxy pool is not the only measure of its quality.

Also important is its “churn,” the rate at which it is replenished

with fresh proxy IP addresses. Churn determines how hard a

10

https://play.google.com/store/apps/details?id=org.torproject.android
https://forum.torproject.org/t/problems-with-snowflake-since-2023-09-20-broker-failure-unexpected-error-no-answer/9346
https://forum.torproject.org/t/problems-with-snowflake-since-2023-09-20-broker-failure-unexpected-error-no-answer/9346
https://forum.torproject.org/t/problems-with-snowflake-since-2023-09-20-broker-failure-unexpected-error-no-answer/9346
https://bugs.torproject.org/tpo/network-health/analysis/59

Unique proxy IP addresses over the preceding 24 hours

Shared IP addresses in later
(overlapping) 24­hour windows

0

50,000

100,000

150,000

Jan 02
2023

Jan 09 Jan 16 Jan 23 Jan 30

Figure 6: Proxy pool churn in January 2023. The dark

upper line shows the number of unique proxy IP addresses in

a 24-hour window starting at the point indicated. The lighter

descending lines show how many of the same IP addresses

remain in the pool, at 1-hour intervals up to 40 hours later.

It takes about 20 hours for 50% of the proxy pool to turn over.

censor would have to work to keep a blocklist of proxy IP ad-

dresses up to date; or alternatively, how quickly a momentarily

complete blocklist would lose effectiveness.

We ran an experiment to measure churn. Every hour, the

broker logged a record of the proxy IP addresses it had seen

in the past hour. To avoid storing real proxy IP addresses,

each record was not a transparent list, but a HyperLogLog++

sketch [16], a probabilistic data structure for estimating the

number of distinct elements in a multiset. We additionally

hashed proxy IP addresses with a secret string before adding

them to a sketch, to prevent their recovery from our published

data. A sketch supports two basic operations: count and merge.

Given a sketch Ĕ , we may compute an approximate count |Ĕ |

of its unique elements, and given two sketches Ĕ andĕ , we may

merge them into a new sketch representing the union Ĕ∪ĕ . The

quantity we are interested in, the size of the intersection of two

sketches, is computed using the formula |Ĕ |+|ĕ |−|Ĕ∪ĕ |. Such

a computation estimates how many IP addresses are shared

across two samples of the proxy pool.

Figure 6 visualizes the results of the churn experiment. We

merged consecutive sketches over a 24-hour window to serve as

a reference, then computed the size of its intersection with other

windows of the same size, offset by +1, +2, . . . , +40 hours.

After 1 hour, the shifted window still has, on average, 97.3%

of addresses in common with the reference; after 12 hours the

fraction has fallen to 68.8%; by the time 24 hours have elapsed,

only 38.2% of proxy IP addresses are ones that had been seen

in the previous day.

4.4 Multiple bridges

In the abstract model of Figure 1, the bridge is a single, central-

ized entity. It can be centralized because it is never accessed

directly, but only via temporary proxies. Unlike more tra-

ditional static proxy systems, Snowflake does not benefit, in

terms of blocking resistance, from having multiple bridges.

For scalability reasons, though, it is useful for “the” bridge

to be realized as multiple servers, each handling a fraction of

client traffic.

Our deployment now uses two bridges. Generalizing from Update on

publica-

tion.
one bridge to two required changes to the messages exchanged

between clients, proxies, and the broker. Unfortunately, the fact

of multiple bridges cannot be made fully transparent to clients,

for technical reasons related to Tor. In our design, the client

informs the broker of what bridge it wants to use, the broker

conveys the choice to the proxy, and the proxy connects to the

client’s chosen bridge. This is in contrast to other imaginable

designs where the choice of bridge is made by the broker or the

proxy. We will discuss design considerations and tradeoffs.

One minor difficulty is distributing the Turbo Tunnel layer.

Recall from Section 2.3 that Snowflake has the notion of an

end-to-end session between a client and the bridge, indepen-

dent of temporary proxy connections that carry it. This is

made possible by extensive state stored at the bridge: a table of

clients, reassembly buffers, transmission queues, timers, and

so on. While it is certainly possible to instantiate one such

bundle of state variables per bridge, a session begun in one

instance must remain with that instance—no other has the con-

text necessary to make the packets of the session meaningful.

This difficulty might be resolved by hashing the client’s session

identifier string to index a consistent bridge per session, as long

as the set of bridges does not change too frequently.

There is another difficulty that is harder to work around.

A Tor bridge is identified by a long-term identity public key.

If, on connecting to a bridge, the client finds that the bridge’s

identity is not the expected one, the client will terminate the

connection [5 §4.2]. The Tor client can configure at most one

identity per bridge; there is no way to indicate (with a certifi-

cate, for example) that multiple identities should be consid-

ered equivalent. This constraint leaves two options: either all

Snowflake bridges must share the same cryptographic identity,

or else it must be the client that makes the choice of what bridge

to use. While the former option is possible to do (by synchro-

nizing identity keys across servers), every added bridge would

increase the risk of compromising the all-important identity

keys. Our vision was that different bridge sites would run in

different locations with their own management teams, and that

any compromise of a bridge site should affect that site only.

These considerations led us to a multi-bridge design in which

clients have awareness of (at least a subset of) all bridges, and

it is the client that chooses which bridge will be used for a

particular session. The client includes a bridge identity string

in its rendezvous message to the broker (Section 2.1); then the

broker maps the identity to the WebSocket URL of the cor-

responding bridge, and conveys that URL to the proxy that’s

chosen to serve the client. We rely on clients choosing uni-

formly to equalize load across bridges. A consequence is that

every bridge must meet a minimum performance standard: we

cannot, say, centrally assign 20% of clients to one and 80% to

another according to their relative capacity. Another drawback

is that there is currently no way to instruct Tor to connect to only

11

one of the bridges it knows about (short of rewriting the con-

figuration file): if two bridges are configured, Tor starts two

sessions through Snowflake, each doing its own rendezvous,

which is wasteful and makes for a more conspicuous network

fingerprint. Still, this is the best solution we have found, given

the constraints. A deployment not based on Tor would have

more flexibility.

A client-chooses design risks misuse by clients, if not han-

dled carefully. Clients should only be able to select from a

limited set of known bridges, not cause proxies to connect

to arbitrary destinations—otherwise the tens of thousands of

Snowflake proxies might be weaponized to attack third parties.

The client’s bridge selection in its rendezvous message is rep-

resented not as an IP address or hostname, but as a hash of

the bridge’s public identity key. The broker maps the iden-

tity to a WebSocket URL by consulting its own local database

of known bridges, and rejects rendezvous messages that refer

to an unknown bridge. After the broker tells the proxy what

WebSocket URL to connect to, the proxy does its own check,

verifying that the hostname in the URL is a subdomain of a

known suffix reserved for Snowflake bridges. So there are two

independent safeguards against misuse.

5 Notable blocking attempts

In Section 4.1 we saw how Snowflake’s user counts have at

times been affected by the blocking actions of censors. Now

we take a closer look at selected censorship events. The effect

of censorship has usually been to increase rather than decrease

the number of Snowflake users. This is no paradox: as censor-

ship intensifies, users are displaced from less resilient to more

resilient systems. Snowflake’s blocking resistance has not in

every case been an unqualified success, though, and here we

also reflect on missteps and persistent challenges.

The examples of this section are taken from Russia, Iran,

China, and Turkmenistan, and are selected for being significant

and instructive. Common lessons are that lines of communi-

cation and a good working relationship with affected users are

invaluable in quickly understanding and reacting to blocking;

and that blocking resistance can only be understood in relation

to a censor, because every censor’s cost calculus is different.

Snowflake is blockable by any censor that is willing to block

WebRTC. We would not claim otherwise. Indeed, we believe

this is how circumvention systems should be presented: not by

arguing their unblockability in absolute terms, but by laying out

what actions by the censor would suffice to block it—or more

to the point, what sacrifices a censor would have to make in

order to block it. Some censors may be able to make those

sacrifices; others may not. Advancing the state of the art of

censorship circumvention consists in pushing blocking beyond

the capabilities of more and more censors.

5.1 Blocking in Russia

Snowflake, along with other common ways of accessing Tor,

was blocked in a subset of ISPs in Russia on 2021-12-01 [38].

The event was evidently coordinated and targeted, as it hap-

pened suddenly and affected multiple Tor-related protocols.

Besides Snowflake, a portion of Tor relays and bridges, as well

as some servers of the circumvention transports meek and

obfs4, were blocked, at least temporarily. As might be ex-

pected, the attempt to block various blocking-resistant proto-

cols was less than totally successful, and its ultimate effect was

to substantially increase the number of users accessing Tor via

circumvention transports, Snowflake among them.

We had the advantage of established relationships with de-

velopers and users in Russia, one of whom, through manual

testing, found the traffic feature that was being used to dis-

tinguish Snowflake. It was DTLS fingerprinting, of the kind

cautioned about in Section 3. Specifically, it was the presence

of a supported groups extension in the DTLS Server Hello

message produced by Pion. The extension being present in

Server Hello was a bug in itself, but it also afforded the cen-

sor a feature to match on that would detect DTLS connections

with a Pion implementation in the server role, without affecting

other forms of DTLS. The process of finding the flaw, fixing

it, and shipping new releases of Tor Browser took a few weeks,

after which the user count rose quickly: from the beginning

to the end of December 2021, the number of users in Russia

grew from about 400 to about 4,000 (Figure 7). Snowflake was

to become a significant tool amid the general intensification

of censorship in Russia following the invasion of Ukraine in

February 2022.

The Server Hello supported groups distinguisher used to de-

tect Snowflake in Russia had been discovered and documented

by MacMillan et al. [23 §3] already in 2020. We might have

avoided this blocking event by proactively fixing the known

distinguisher—but it was not necessarily the wrong call not to

have done so. In a project like Snowflake, there is always more

to do than time to do it; one must consider the opportunity cost

of preempting specific blocking that may not come to pass.

In this case, a reactive approach by us was enough: the loss

was minor, and we were able to patch the problem quickly.

Even in the ISPs where the blocking rule was present, it did not

succeed at blocking 100% of Snowflake connections, because

of the way it targeted a quirk of the Pion implementation of

Server Hello. When the DTLS server role in the WebRTC data

channel was played by a web browser proxy, not a standalone

proxy or Snowflake client, the feature would not be present.

In May 2022 we got a report of a new detection rule, this

time keyed on not just the presence, but the contents of the

supported groups extension, now at a byte offset suggesting

that it targeted the Client Hello message, not Server Hello. The

presence of a supported groups extension in Client Hello is not

at all unusual, but the specific groups offered by Pion’s imple-

mentation differed from those of common browsers. Despite

12

0

5,000

10,000

15,000

N D J
2022

F M A M J J A S O N D J
2023

F M A M J J

Figure 7: Snowflake users in Russia (average concurrent).

The attempted blocking of Tor-related transports in Decem-

ber 2021 led to Snowflake’s first surge in usage. The decrease

in September–October 2022 coincided with an even larger in-

flux of users from Iran.

0

20,000

40,000

60,000

Sep Oct Nov Dec Jan
2023

Feb Mar Apr May

Figure 8: Snowflake users in Iran. Heightened censorship

beginning in September 2022 caused Iran to become the single

biggest source of Snowflake users. The drop in October 2022

was the result of TLS fingerprint blocking, which interfered

with rendezvous and took some time to mitigate.

0

1,000

2,000

3,000

J
2022

F M A M J J A S O N D J
2023

F M A M J J

Figure 9: Snowflake users in China. Though no sustained

blocking is evident, disruption of domain fronting rendezvous

for three days in May 2023 briefly depressed user numbers.

0

10

20

30

O N D J
2021

F M A M J J A S O N D J
2022

F M A M J J A S O N

Figure 10: Snowflake users in Turkmenistan. Though there

have never been many Snowflake users in Turkmenistan, block-

ing events are evident on 2021-10-24 and 2022-08-03.

our being able to confirm the existence of the new blocking rule,

testers reported that Snowflake continued to work—which may

have something to do with the fact that the Snowflake client

does not always play the client role in DTLS. If the Snowflake

client is the DTLS server, and the DTLS client is a browser

proxy, then the byte pattern looked for by the blocking rule

does not appear. We developed a mitigation, but by the time

we had prepared a testing release in July 2022, the new rule

had apparently been removed and replaced by another. We can

only speculate as to motivations, but it may be that the censor

found the old rule to have too many false positives, or simply

not to be effective enough.

The detection rule that replaced supported groups in Client

Hello looked for the presence of a Hello Verify Request mes-

sage. Hello Verify Request is an anti-denial-of-service feature

in DTLS, in which the server sends a random cookie to the

client, and the client sends a second Client Hello message,

this one containing a copy of the cookie [33 §5.1]. Send-

ing Hello Verify Request is not an error (it is a “MAY” in

the RFC), but because the Pion implementation in Snowflake

sent it, and major browsers did not, it was a reliable indica-

tor of Snowflake connections. (Those, at least, in which the

DTLS server role was played by a Snowflake client or stan-

dalone proxy.) This distinguisher had also been anticipated

by MacMillan et al. [23 §3] in 2020. The first reports of this

blocking rule were in July 2022; but as you can see in Figure 7,

it had no apparent immediate effect. It is hard to say whether the

drastic decline in October 2022 was a consequence of this rule,

or some other, unidentified one. That decline coincided with

an explosion of users from Iran, which temporarily affected

the usability of the whole system. We deployed a mitigation

to remove the Hello Verify Request message from Snowflake,

regrettably, only in February 2023, after which the number of

users in Russia began to recover.

The example of Snowflake in Russia demonstrates some

of the difficulty of censorship measurement. The answer to

a question like “Does Snowflake work in Russia?” is not a

simple yes or no. It may depend on the date, the ISP, and even

such factors as which endpoint plays the DTLS server role.

5.2 Blocking in Iran

In late September 2022, users from Iran became the majority

of Snowflake users almost overnight, only to fall just as quickly

two weeks later. See Figure 8. The cause of the rise was ex-

traordinary new network restrictions amid mass protests [3];

the cause of the decline was TLS fingerprint blocking, which

stopped Snowflake rendezvous from working. Specifically,

it was a block of one of the TLS fingerprints of the crypto/tls

package in the standard library of the Go programming lan-

guage (the language in which the Snowflake client is written).

We say “one of” the fingerprints because there are several the

package may output. This fact prevented the user count from

falling all the way to zero, but also complicated our efforts to

13

identify the cause of the decline. We isolated two variables

that were relevant in this case: the version of the Go standard

library, and the presence or absence of hardware-accelerated

AES. Between Go 1.17 and Go 1.18, the crypto/tls package

stopped declaring support for the old protocol versions TLS 1.0

and 1.1 in the Client Hello message [15]. And if the operat-

ing environment has hardware-accelerated AES (common on

desktop platforms, not so common on mobile), the crypto/tls

package prioritizes AES ciphersuites; otherwise it prioritizes

ChaCha ones. Of the four possible TLS fingerprints resulting

from the combination of these two variables, only one was

blocked, namely the one from Go 1.17, without AES acceler-

ation. As it happens, it was mainly Orbot that was affected,

because at the time it used a Snowflake client compiled with

Go 1.17, and it runs on mobile platforms that are less likely to

have AES acceleration. Tor Browser was relatively unaffected,

because it either ran on desktops with AES acceleration, or on

mobile platforms with the newer version of the Go standard

library whose TLS fingerprint was not being matched. But

evidently Orbot is more used in Iran than Tor Browser, because

the decline was so drastic.

That simple TLS fingerprinting worked to block Snowflake

rendezvous was negligence on our part. Anticipating such

an event, we had already implemented TLS camouflage us-

ing uTLS in the Snowflake client, but failed to turn it on by

default. Activating the feature required only a small config-

uration change, but we had to wait for new releases of Tor

Browser and Orbot to get it into the hands of users: see the

September–November 2022 interval in Figure 8.

The fact that only one (albeit the most common) of the

Snowflake client’s TLS fingerprints was blocked could be a sign

of carelessness on the part of the censor. On the other hand, it is

not certain that the TLS fingerprint blocking of October 2022

was meant to disrupt Snowflake specifically. Go is a popular

language for implementing circumvention systems. Snowflake

may have been caught up in blocking that was intended for

another system.

After repairing the TLS fingerprinting flaw, the number of

users from Iran gradually recovered to near its former peak.

We are aware of only minor disruptions after this time. The de-

fault front domain used in rendezvous was blocked (by TLS

SNI) in some ISPs between 2023-01-16 and 2023-01-24.

We confirmed the block using data from the OONI censor-

ship measurement platform. A reduction in users is visible at

this time. AMP cache rendezvous was a successful workaround

while the block was in effect. After the block was lifted, OONI

measurements in the following weeks showed isolated cases of

failure to connect to the front domain. These may have been

further attempts at blocking. If they were, they did not have

much of an effect.

5.3 Blocking in China

The user count graph from China, Figure 9, does not show any

drastic changes like others we have discussed so far. There are

a modest but respectable number of Snowflake users in China.

Though there have been no singular, sustained events, we have

seen evidence of short-term or tentative blocking of Snowflake

in China.

In May 2019, when Snowflake was still only in alpha re-

lease, a user in China reported a failure to connect. Investi-

gation revealed that the cause was IP address blocking of the

few Snowflake proxies that existed at the time. Rendezvous

worked, and the STUN exchange worked, but client and proxy

could not establish a connection. We confirmed the evidence

by temporarily running a new proxy at a different IP address:

clients in China could connect when they happened to be as-

signed that proxy by the broker. This was back before the web

browser extension proxy existed, and the only consistent proxy

support was standalone proxies we developers ran ourselves at

a static IP address. This problem went away as the proxy pool

grew in size.

Later that month, we discovered another form of blocking

in China: that of the default STUN server, of which there was

only one configured at the time. The solution to this problem

was to add more STUN servers and select a subset of them to

use on each rendezvous attempt. Curiously, it seems that when

the STUN server was blocked, the standalone proxies that had

been blocked earlier that month became unblocked.

The next incidents we are aware of did not occur until 2023,

recent enough to be in the scope of Figure 9. On May 12, 13,

and 14, a few users reported problems with domain fronting

rendezvous. We could not get systematic measurements, but

some reports suggested that the blocking was triggered by mul-

tiple (two or three) HTTPS connections with the same TLS SNI

to certain IP addresses within a short time. It is possible that

Snowflake was not the main target of this blocking behavior,

and was affected only as a side effect. If it indeed had to

do with Snowflake, our best guess is that it was aimed at the

multiple rendezvous mentioned in Section 4.4—though such

a policy would certainly also affect a large number of non-

Snowflake connections. The number of users from China was

about halved during these three days. On May 15, this blocking

went away and user counts returned to normal.

Also in May 2023, one user reported evident throttling (arti-

ficial reduction in speed by packet dropping) of TLS-in-DTLS

connections, based on packet size and timing features. Such a

policy would affect Snowflake, because it transports Tor TLS

inside DTLS data channels. Reportedly, adding some padding

to the first few packets to disrupt the size and timing signa-

ture was enough to prevent throttling. Our own speed tests

run at the time did not show evidence of throttling, with or

without added padding. There was no obvious reduction in the

number of users. It may have been a localized, ISP-specific

phenomenon.

14

5.4 Blocking in Turkmenistan

There have never been more than a few tens of Snowflake users

in Turkmenistan. Even so, it has happened at least twice that

the number of users dropped suddenly to zero, as you can

see in Figure 10. We attributed the drops to multiple causes:

filtering of the default broker front domain by DNS and TCP

RST injection, and blocking of certain UDP port numbers

commonly used by STUN.

Turkmenistan is a particularly challenging environment for

circumvention. Though unsophisticated, the censorship there

is more severe and indiscriminate than in other places we have

seen. The fraction of the population that has access to the

Internet is relatively small, which makes it hard to communicate

with volunteer testers and lengthens testing cycles. We have

been able to mitigate Snowflake blocking in Turkmenistan, but

only partly, and after protracted effort.

The drop on 2021-10-24 was caused by blocking of the

default broker front domain. We determined this by taking

advantage of a feature of the Turkmenistan firewall, namely its

bidirectionality. Nourin et al. [26 §2] provide more details;

we will state just the essential information here. Among the

censorship techniques used in Turkmenistan are DNS response

injection and TCP RST injection. DNS queries for filtered

hostnames receive an injected response containing a false IP

address; TLS handshakes with a filtered SNI receive an injected

TCP RST packet that tears down the connection. Conveniently

for analysis, it works in both directions: packets that enter

the country are subject to injection just as those that exit it are.

By sending probes into the country from outside, we found that

the default broker front domain was blocked at both the DNS

and TLS layers. It was some time—not until August 2022—

before we got confirmation from testers that an alternative front

domain worked to get around the block of the broker.

The increase in the number users from May to August 2022

visible in Figure 10 was caused by a partial unblocking of the

broker front domain on 2023-05-03. We realized this only

in retrospect, by looking at logs from Censored Planet [35],

a censorship measurement system that had continuous mea-

surements of the domain at that time, in one autonomous system

in Turkmenistan. There was a clear shift from RST responses

to successful TLS connections on that date. DNS measure-

ments are available only after that date, so they do not show

a change, but they also showed no blocking. The unblocking

evidently permitted some users to connect as before. But it

must not have been nationwide, because as late as 2022-08-18,

some users reported that RST injection was still in place for

them (though DNS injection had ceased).

There was yet another layer to the blocking. Even if they

could contact the broker (at the default or an alternative front

domain), clients could not then establish a connection with a

proxy. Further testing revealed blocking of the default STUN

port, UDP 3478. A client that cannot communicate with a

STUN server cannot find its own ICE candidate addresses (Sec-

tion 2.2), which makes most WebRTC proxy connections fail.

(The exceptions are proxies without NAT and ingress filtering.

While there are some such proxies, censorship in Turkmenistan

also outright blocks large swaths of the IP address space, in-

cluding data center address ranges where those proxies tend

to run.) As chance would have it, the NAT discovery feature

we rely on for testing the NAT type of clients requires STUN

servers to open a second, functionally equivalent listener on

a different port [22 §6] (commonly port 3479). Changing

to those alternative STUN port numbers let some users con-

nect to Snowflake again. Specifically, STUN servers on port

3479 worked in AGTS, one of two major affected ISPs. The

workaround did not work in Turkmentelecom, the other ma-

jor ISP, where port 3479 was blocked. Though we do not have

continuous measurements to be sure, we suspect that the STUN

port blocking began on 2022-08-03 and precipitated the drop

seen there in Figure 10.

The blocking techniques just described are crude, surely re-

sulting in significant overblocking—but they nevertheless offer

greater challenges to circumvention than the more considered

blocking of Russia and Iran. We highlight this to make the point

that blocking resistance cannot be defined in absolute terms, but

only in relation to a particular censor and its predilections. Cen-

sors differ not only in resources (time, money, equipment, per-

sonnel), but also in their tolerance for the social and economic

harms of overblocking. Circumvention can only respond to and

act within these constraints. The government of Turkmenistan

has evidently chosen to prioritize political control over a func-

tioning network, to an extreme degree. To paraphrase one of Check

that this

holds wa-

ter with

some-

one who

knows

TM poli-

tics.

our collaborators: “What they have in Turkmenistan can hardly

be called an Internet.” In a network already heavily damaged

by oppressive policy, the marginal harm caused by the clumsy

blocking of this or that circumvention system is relatively small.

This explains the sense in which a resource-poor censor can

“afford” certain blocking actions that a richer, more capable

censor cannot.

6 Future work

A natural extension of Snowflake would be to have it access

systems other than Tor—ordinary VPNs, for example. Tor has

its benefits: an existing user base, a standard (pluggable trans-

ports) for integrating circumvention modules, and exit nodes

separate from entry nodes, which relieve the circumvention de-

veloper of the concerns associated with actually exiting traffic

to its destination. But Tor has drawbacks as well, notably its

lower speed and a lack of support for UDP and other non-

TCP protocols. Nothing inherently ties Snowflake to Tor, and

it might easily be adapted to other systems. One question

is whether every Snowflake-like deployment should manage

its own pool of proxies, or if proxies can somehow be shared.

Building Snowflake’s population of proxies has been a substan-

tial undertaking in itself—for every project to have to repeat

15

the process from scratch would be a regrettable duplication of

effort. There is no reason why one proxy might not serve mul-

tiple projects, the client expressing its preference in the same

way it now signals which Tor bridge to use (Section 4.4). But

there would be design issues to work out. While some proxy

operators may be happy to donate bandwidth to a free-to-use

project like Tor, they may need more incentive than altruism to

help a commercial VPN. A shared deployment would impose

additional friction on development (making it harder to alter

the proxy protocol, for example). Rather than retrofit the cur-

rent Tor-based proxies with support for other systems, a next-

generation proxy pool might be designed from the ground up

with multiple cooperating projects in mind. If it proved suc-

cessful, the Tor deployment could migrate to it.

The Turbo Tunnel reliability layer of Section 2.3 was nec-

essary for providing a continuous session abstraction over a

sequence of unreliable proxies. But it might do even more:

in particular, it should be possible for a client to multiplex its

traffic over multiple proxies not just sequentially, but in par-

allel. (Something like multipath TCP.) Sequence numbers in

the inner reliability layer would ensure a reliable stream, even

when proxies have different lifetimes and performance char-

acteristics. Multiplexing could increase performance by using

the sum of the bandwidths of the individual proxies, and reduce

variability by hedging against the client being assigned one very

slow proxy. Using two or more proxies at once would eliminate

the brief pause for re-rendezvous between consecutive proxies

that now occurs. Our experiments with multiplexing have so

far not shown enough benefit to justify the change, though it

may be a matter of tuning. And of course, analysis would be

required to determine whether simultaneous WebRTC connec-

tions form a distinctive network fingerprint.

Availability

The project web site, https://snowflake.torproject.org/, has

links to source code and instructions for installing the proxy

browser extensions.Add Git

clone

URL or

similar for

the paper

itself. Say

it shows

how to

repro-

duce our

figures.

Must

also in-

clude the

churn logs

of Sec-

tion 4.3.

Acknowledgements

The Snowflake project has been made possible by the cooper-

ation and support of many people and organizations. We want

to thank particularly: Chris Ball, Griffin Boyce, Roger Dingle-

dine, Sean DuBois, Arthur Edelstein, Mia Gil Epner, gus-

tavo gus, Haz Æ 41, Jordan Holland, Armin Huremagic,

Ximin Luo, Kyle MacMillan, Ivan Markin, meskio, Prateek

Mittal, Linus Nordberg, Vern Paxson, Sukhbir Singh, Aaron

Swartz, ValdikSS, Philipp Winter, Censored Planet, China

Digital Times, Greenhost, Guardian Project, Mullvad, the

Net4People BBS and NTC forums, OONI, the Open Tech-

nology Fund, Pion, the Tor Project, financial donors, and vol-

unteers everywhere who run Snowflake proxies.

References

[1] Harald T. Alvestrand. Overview: Real-time protocols for

browser-based applications. RFC 8825, January 2021.

https://www.rfc-editor.org/info/rfc8825.

[2] Diogo Barradas, Nuno Santos, Luı́s Rodrigues, and

Vı́tor Nunes. Poking a hole in the wall: Efficient

censorship-resistant Internet communications by

parasitizing on WebRTC. In Computer and

Communications Security. ACM, 2020.

https://www.gsd.inesc-

id.pt/∼nsantos/papers/barradas ccs20.pdf.

[3] Simone Basso, Maria Xynou, Arturo Filastò, and

Amanda Meng. Iran blocks social media, app stores and

encrypted DNS amid Mahsa Amini protests, September

2022. https://ooni.org/post/2022-iran-blocks-social-

media-mahsa-amini-protests/.

[4] Junqiang Chen, Guang Cheng, and Hantao Mei.

F-ACCUMUL: A protocol fingerprint and accumulative

payload length sample-based Tor-Snowflake

traffic-identifying framework. Applied Sciences, 13(1),

2023. https://www.mdpi.com/2076-3417/13/1/622.

[5] Roger Dingledine and Nick Mathewson. Tor protocol

specification, March 2023.

https://spec.torproject.org/tor-spec.

[6] Nick Feamster, Magdalena Balazinska, Winston Wang,

Hari Balakrishnan, and David Karger. Thwarting web

censorship with untrusted messenger discovery. In

Privacy Enhancing Technologies. Springer, 2003.

http://nms.csail.mit.edu/papers/disc-pet2003.pdf.

[7] David Fifield. Turbo Tunnel, a good way to design

censorship circumvention protocols. In Free and Open

Communications on the Internet. USENIX, 2020.

https://www.bamsoftware.com/papers/turbotunnel/.

[8] David Fifield and Mia Gil Epner. Fingerprintability of

WebRTC. CoRR, abs/1605.08805, 2016.

https://arxiv.org/abs/1605.08805.

[9] David Fifield, Nate Hardison, Jonathan Ellithorpe,

Emily Stark, Roger Dingledine, Phil Porras, and Dan

Boneh. Evading censorship with browser-based proxies.

In Privacy Enhancing Technologies. Springer, 2012.

https://crypto.stanford.edu/flashproxy/flashproxy.pdf.

[10] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann,

and Vern Paxson. Blocking-resistant communication

through domain fronting. Privacy Enhancing

Technologies, 2015(2), 2015.

https://www.bamsoftware.com/papers/fronting/.

16

https://snowflake.torproject.org/
https://www.rfc-editor.org/info/rfc8825
https://www.gsd.inesc-id.pt/~nsantos/papers/barradas_ccs20.pdf
https://www.gsd.inesc-id.pt/~nsantos/papers/barradas_ccs20.pdf
https://ooni.org/post/2022-iran-blocks-social-media-mahsa-amini-protests/
https://ooni.org/post/2022-iran-blocks-social-media-mahsa-amini-protests/
https://www.mdpi.com/2076-3417/13/1/622
https://spec.torproject.org/tor-spec
http://nms.csail.mit.edu/papers/disc-pet2003.pdf
https://www.bamsoftware.com/papers/turbotunnel/
https://arxiv.org/abs/1605.08805
https://crypto.stanford.edu/flashproxy/flashproxy.pdf
https://www.bamsoftware.com/papers/fronting/

[11] David Fifield and Linus Nordberg. Running a

high-performance pluggable transports Tor bridge. In

Free and Open Communications on the Internet, 2023.

https://www.bamsoftware.com/papers/pt-bridge-hiperf/.

[12] Gabriel Figueira, Diogo Barradas, and Nuno Santos.

Stegozoa: Enhancing WebRTC covert channels with

video steganography for Internet censorship

circumvention. In Asia CCS. ACM, 2022.

https://dl.acm.org/doi/10.1145/3488932.3517419.

[13] Sergey Frolov, Jack Wampler, Sze Chuen Tan, J. Alex

Halderman, Nikita Borisov, and Eric Wustrow. Conjure:

Summoning proxies from unused address space. In

Computer and Communications Security. ACM, 2019.

https://jhalderm.com/pub/papers/conjure-ccs19.pdf.

[14] Sergey Frolov and Eric Wustrow. The use of TLS in

censorship circumvention. In Network and Distributed

System Security. The Internet Society, 2019.

https://tlsfingerprint.io/static/frolov2019.pdf.

[15] Go 1.18 release notes: TLS 1.0 and 1.1 disabled by

default client-side, March 2022.

https://go.dev/doc/go1.18#tls10.

[16] Stefan Heule, Marc Nunkesser, and Alex Hall.

HyperLogLog in practice: Algorithmic engineering of a

state of the art cardinality estimation algorithm. In

Extending Database Technology. ACM, 2013.

https://research.google/pubs/pub40671/.

[17] Christer Holmberg and Roman Shpount. Session

Description Protocol (SDP) offer/answer considerations

for Datagram Transport Layer Security (DTLS) and

Transport Layer Security (TLS). RFC 8842, January

2021. https://www.rfc-editor.org/info/rfc8842.

[18] Randell Jesup, Salvatore Loreto, and Michael Tüxen.

WebRTC data channels. RFC 8831, January 2021.

https://www.rfc-editor.org/info/rfc8831.

[19] Ari Keränen, Christer Holmberg, and Jonathan

Rosenberg. Interactive Connectivity Establishment

(ICE): A protocol for network address translator (NAT)

traversal. RFC 8445, July 2018.

https://www.rfc-editor.org/info/rfc8445.

[20] Patrick Lincoln, Ian Mason, Phillip Porras, Vinod

Yegneswaran, Zachary Weinberg, Jeroen Massar,

William Simpson, Paul Vixie, and Dan Boneh.

Bootstrapping communications into an anti-censorship

system. In Free and Open Communications on the

Internet. USENIX, 2012.

https://www.usenix.org/conference/foci12/workshop-

program/presentation/lincoln.

[21] Karsten Loesing. Counting daily bridge users. Technical

Report 2012-10-001, The Tor Project, October 2012.

https://research.torproject.org/techreports/counting-

daily-bridge-users-2012-10-24.pdf.

[22] Derek MacDonald and Bruce Lowekamp. NAT

behavior discovery using session traversal utilities for

NAT (STUN). RFC 5780, May 2010.

https://www.rfc-editor.org/info/rfc5780.

[23] Kyle MacMillan, Jordan Holland, and Prateek Mittal.

Evaluating Snowflake as an indistinguishable censorship

circumvention tool. CoRR, abs/2008.03254, 2020.

https://arxiv.org/abs/2008.03254.

[24] Alexey Melnikov and Ian Fette. The WebSocket

protocol. RFC 6455, December 2011.

https://www.rfc-editor.org/info/rfc6455.

[25] Milad Nasr, Hadi Zolfaghari, Amir Houmansadr, and

Amirhossein Ghafari. MassBrowser: Unblocking the

censored web for the masses, by the masses. In Network

and Distributed System Security. The Internet Society,

2020. https://www.ndss-symposium.org/ndss-

paper/massbrowser-unblocking-the-censored-web-for-

the-masses-by-the-masses/.

[26] Sadia Nourin, Van Tran, Xi Jiang, Kevin Bock, Nick

Feamster, Nguyen Phong Hoang, and Dave Levin.

Measuring and evading Turkmenistan’s Internet

censorship. In The International World Wide Web

Conference. ACM, 2023.

https://dl.acm.org/doi/abs/10.1145/3543507.3583189.

[27] OpenJS Foundation. How AMP pages are cached.

https://amp.dev/documentation/guides-and-tutorials/

learn/amp-caches-and-cors/how amp pages are cached

[cited 2023-06-10].

[28] Marc Petit-Huguenin, Suhas Nandakumar, Christer

Holmberg, Ari Keränen, and Roman Shpount. Session

Description Protocol (SDP) offer/answer procedures for

Interactive Connectivity Establishment (ICE). RFC

8839, January 2021.

https://www.rfc-editor.org/info/rfc8839.

[29] Marc Petit-Huguenin, Gonzalo Salgueiro, Jonathan

Rosenberg, Dan Wing, Rohan Mahy, and Philip

Matthews. Session Traversal Utilities for NAT (STUN).

RFC 8489, February 2020.

https://www.rfc-editor.org/info/rfc8489.

[30] Pion WebRTC. https://github.com/pion/webrtc.

[31] Tirumaleswar Reddy, Alan Johnston, Philip Matthews,

and Jonathan Rosenberg. Traversal Using Relays around

NAT (TURN): Relay extensions to Session Traversal

Utilities for NAT (STUN). RFC 8656, February 2020.

https://www.rfc-editor.org/info/rfc8656.

17

https://www.bamsoftware.com/papers/pt-bridge-hiperf/
https://dl.acm.org/doi/10.1145/3488932.3517419
https://jhalderm.com/pub/papers/conjure-ccs19.pdf
https://tlsfingerprint.io/static/frolov2019.pdf
https://go.dev/doc/go1.18#tls10
https://research.google/pubs/pub40671/
https://www.rfc-editor.org/info/rfc8842
https://www.rfc-editor.org/info/rfc8831
https://www.rfc-editor.org/info/rfc8445
https://www.usenix.org/conference/foci12/workshop-program/presentation/lincoln
https://www.usenix.org/conference/foci12/workshop-program/presentation/lincoln
https://research.torproject.org/techreports/counting-daily-bridge-users-2012-10-24.pdf
https://research.torproject.org/techreports/counting-daily-bridge-users-2012-10-24.pdf
https://www.rfc-editor.org/info/rfc5780
https://arxiv.org/abs/2008.03254
https://www.rfc-editor.org/info/rfc6455
https://www.ndss-symposium.org/ndss-paper/massbrowser-unblocking-the-censored-web-for-the-masses-by-the-masses/
https://www.ndss-symposium.org/ndss-paper/massbrowser-unblocking-the-censored-web-for-the-masses-by-the-masses/
https://www.ndss-symposium.org/ndss-paper/massbrowser-unblocking-the-censored-web-for-the-masses-by-the-masses/
https://dl.acm.org/doi/abs/10.1145/3543507.3583189
https://amp.dev/documentation/guides-and-tutorials/learn/amp-caches-and-cors/how_amp_pages_are_cached
https://amp.dev/documentation/guides-and-tutorials/learn/amp-caches-and-cors/how_amp_pages_are_cached
https://www.rfc-editor.org/info/rfc8839
https://www.rfc-editor.org/info/rfc8489
https://github.com/pion/webrtc
https://www.rfc-editor.org/info/rfc8656

[32] Eric Rescorla. WebRTC security architecture. RFC

8827, January 2021.

https://www.rfc-editor.org/info/rfc8827.

[33] Eric Rescorla, Hannes Tschofenig, and Nagendra

Modadugu. The Datagram Transport Layer Security

(DTLS) protocol version 1.3. RFC 9147, April 2022.

https://www.rfc-editor.org/info/rfc9147.

[34] skywind3000. KCP - A fast and reliable ARQ protocol,

January 2020. https://github.com/skywind3000/kcp/

blob/1.7/README.en.md.

[35] Ram Sundara Raman, Prerana Shenoy, Katharina Kohls,

and Roya Ensafi. Censored Planet: An Internet-wide,

longitudinal censorship observatory. In Computer and

Communications Security. ACM, 2020.

https://censoredplanet.org/censoredplanet.

[36] uProxy. https://www.uproxy.org/.

[37] xtaci. smux, February 2023.

https://github.com/xtaci/smux.

[38] Maria Xynou and Arturo Filastò. Russia started

blocking Tor, December 2021.

https://ooni.org/post/2021-russia-blocks-tor/.

18

https://www.rfc-editor.org/info/rfc8827
https://www.rfc-editor.org/info/rfc9147
https://github.com/skywind3000/kcp/blob/1.7/README.en.md
https://github.com/skywind3000/kcp/blob/1.7/README.en.md
https://censoredplanet.org/censoredplanet
https://www.uproxy.org/
https://github.com/xtaci/smux
https://ooni.org/post/2021-russia-blocks-tor/

	Introduction
	How it works
	Rendezvous
	Peer-to-peer connection establishment
	Data transfer

	Protocol fingerprinting
	Experience
	Client counts and bandwidth
	Number and type of proxies
	Proxy churn
	Multiple bridges

	Notable blocking attempts
	Blocking in Russia
	Blocking in Iran
	Blocking in China
	Blocking in Turkmenistan

	Future work

